
A Framework to Mitigate Debugging Difficulty on Agent Migrat ion

Shin Osaki1, Masayuki Higashino2, Kenichi Takahashi1, Takao Kawamura1 and Kazunori Sugahara1

1Department of Information and Electronics , Graduate School of Engineering, Tottori University, Tottori, Japan
2Organization for Regional Industrial Academic Cooperation, Tottori University, Tottori, Japan

{s092018, s032047, takahashi, kawamura, sugahara}@ike.tottori-u.ac.jp

Keywords: Mobile Agent System, Debug, Distributed System, Migration, Interaction.

Abstract: A mobile agent is an autonomous software module that can workon different computers and migrate among
these computers. The characteristics of a mobile agent, migration and interaction, are helpful to implement
distributed systems. In the real world, however, a mobile agent is not widely used because its migration makes
debugging distributed systems difficult. Therefore, in this paper, we discuss problems in debugging a mobile
agent system and propose a framework that includes a search,a single-step execution, and a reproduction
function to help programmers debug a mobile agent system. Results from our experiments on debugging test
applications show that our framework is helpful to support programmers and help them to debug. This reduces
the number of keystrokes by 41% and number of clicks by 24%.

1 INTRODUCTION

A mobile agent system, which is constructed from
many mobile agents, can migrate among computers to
achieve its tasks. Hence, we can use mobile agent mi-
gration instead of clientserver communications. Be-
cause the mobile agent can continue its work over the
computers, we do not need to elaborate a client- and
server-side program pair. We can implement a server-
and client-side program as one mobile agent, thus en-
abling us to implement a network-based system with-
out being aware of communication APIs and proto-
cols. Such a mobile agent system is attractive for de-
signing, implementing, and maintaining a distributed
system (Hurson et al., 2010; Outtagarts, 2009); how-
ever, a mobile agent is not widely used in the real
world because the migrations of mobile agents make
it difficult to debug mobile agent systems.

To debug a mobile agent system, it is important
to grasp their behavior. However, this is difficult
because there are many mobile agents that migrate
among computers autonomously. In general, a debug-
ger provides remote debugging functions, such as a
breakpoint function and a single-step execution func-
tion, to check the details of running programs; how-
ever, it does not expect the migration of programs.
Thus, we cannot debug mobile agents continuously
because they migrate to other computers even while
programmers are debugging. Another problem is that
the behavior of a mobile agent is affected by other

mobile agents. Furthermore, network conditions can
affect the migration of a mobile agent. Therefore,
we need to consider not just one but multiple mo-
bile agent states and network situations in debugging.
There are some standards organization for agents such
as FIPA(FIPA, 2014) and MASIF(Milojicic et al.,
1998). However, they do not care about the previously
mentioned Problems. In this paper, we discuss their
problems and propose a debugger that has a search
function, a single-step execution function, and a re-
production function for mobile agents.

This paper is organized as follows. Section 2 dis-
cusses problems in debugging mobile agents. Section
3 discusses a framework to solve these problems. Sec-
tion 4 discusses the implementation and evaluation of
our framework. Section 5 shows related works, and
we conclude the paper in Section 6.

2 PROBLEMS IN DEBUGGING
MOBILE AGENT SYSTEMS

Many mobile agents work on many computers and
migrate autonomously. This characteristic enables
us to reduce network traffic and helps us to con-
struct more robust and faulttolerant distributed sys-
tems. However, it is difficult to debug a mobile agent
system because of the following reasons.

190



(a) Autonomous migration. (b) Migration on debugging. (c) Influence from outside.

Figure 1: Problems on debugging a mobile agent system.

Problem 1. Autonomous Migration
In general systems, we usually debug one pro-
gram. However, there are many mobile agents
(programs) in a mobile agent system. Further-
more, mobile agents disperse to many computers
because each mobile agent migrates among com-
puters autonomously (Figure 1(a)). Therefore,
programmers face difficulty grasping the behavior
of mobile agents, thus making it difficult to deter-
mine which mobile agent is causing a bug. To de-
bug a mobile agent system, we need a search func-
tion that enables us to find out the mobile agent
that is causing a bug.

Problem 2. Migration During Debugging
To debug a program on a remote computer, we
often use a remote debugger such as breakpoint
function and single-step execution function. Re-
mote debugger need to connect the remote com-
puter where the target is running. A mobile agent,
however, migrates among computers during de-
bugging. A debugger loses the mobile agent when
it migrates because the mobile agent is not run-
ning on remote connected computer yet (Figure
1(b)). To debug a mobile agent continuously, we
need to change the connection automatically ac-
cording to the mobile agents migration.

Problem 3. Outside Influences
To specify the cause of a bug, we have to repro-
duce the bug. On a mobile agent system, the be-
havior of a mobile agent is affected by the com-
puter environment that the agent is running on and
by other mobile agents. Furthermore, a computer
may leave the network. These reasons make it dif-
ficult to reproduce a bug (Figure 1(c)). Therefore,
we need a function that enables us to reproduce
the bug.

3 DEBUGGING FUNCTIONS FOR
A MOBILE AGENT SYSTEM

In this section, we design a framework to help in de-
bugging a mobile agent system. The framework has
three functions: search, single-step execution, and re-
production. The search function helps us to locate a
mobile agent in the whole system. The single-step ex-
ecution function changes a connection automatically
according to mobile agent migration. The reproduc-
tion function records the state of a agent and the out-
side effects from other agents and enables program-
mers to reproduce a bug.

3.1 Search Function

There are many mobile agents working in a mobile
agent system. To debug the mobile agent system,
programmers need to determine the mobile agent that
is causing the bug. Therefore, we propose a search
function that helps us find a mobile agent that may be
causing a bug.

Typical bugs on a mobile agent system are caused
by the migration of a mobile agent. For example, a
mobile agent migrates to unexpected computers, does
not migrate, or migrates frequently. These migrations
cause a defective state in the mobile agent migration
route and/or intervals of mobile migration. Therefore,
to find such a mobile agent, we prepare a migration
log. The migration log consists of the following con-
tents.

nodesrc address of the computer

nodedest address of the destination computer

stayingtime running time on the computer

agentname role of this mobile agent

agent id identifier of this mobile agent

A�Framework�to�Mitigate�Debugging�Difficulty�on�Agent�Migration

191



Figure 2: Recording migration logs.

The bugs related to migration are judged from
nodesrc, nodedest, and stayingtime.When a mo-
bile agent arrives from a source computer, the search
function records the address of the source computer as
nodesrc. When a mobile agent departs to a destina-
tion computer, the search function records the address
of the destination computer asnodedest. By tracing
these logs, we can determine the migration route of
the mobile agent.

stayingtimerecords the difference between agent
arrival time and departure time. This enables us to
know the defect situation related to a mobile agents
migration. agent name is a name and role that
the programmer specifies.agent id is a universally
unique identifier)(Leach et al., 2005) for identifying
each agent. The search function records these logs
when mobile agents migrate (Figure 2).agentname
andagent id are used for showing a programmer the
search results and selecting the target for debugging.

3.2 Single-step Execution Function

To debug a program, it is necessary to see the state of
the program in detail. In general, a programmer de-
bugs a program by using a single-step execution func-
tion. However, It is difficult to perform this debugging
on a mobile agent system because a mobile agent mi-
grates to remote computers. When the mobile agent
migrates to other computers during debugging, the
general debugger loses the mobile agent. Therefore,
to debug a mobile agent continuously, a singlestep
execution function for a mobile agent system has to
change the connection according to the migration of
the mobile agent when it migrates.

To change this connection, the singlestep execu-
tion function receives the notification of a migration
when the mobile agent migrates to another computer.
Then the singlestep execution function changes the
connection according to this notification. Here, the
single-step execution function might receive multiple
notifications concurrently when a mobile agent mi-
grates frequently because network speeds are differ-
ent in each computer. Therefore, the single-step ex-

Figure 3: Migration sequence for the single-step execution
function.

ecution function needs to know the order of notifica-
tions to avoid losing the mobile agent. Thus, a notifi-
cation consists ofagent id, which is an identifier for
the agent;nodedest, which is the IP address of the
destination computer; andid cnt, which is the num-
ber of migrations.

Figure 3 illustrates the sequence of the single-step
execution function. When the mobile agent migrates
from PC:A to PC:B, the mobile agent sends the fol-
lowing notification.

• agent id = 1a8ebd10

• nodedest= PC:B

• id cnt = 1

Subsequently, the mobile agent migrates from PC:B
to PC:C and sends the following notification.

• agent id = 1a8ebd10

• nodedest= PC:C

• id cnt = 2

If the later notification arrives at the single-step execu-
tion function first, the single-step execution function
recordsnodedest with id cnt = 2. After this pro-
cess, the former notification arrives at the single-step
execution function; the single-step execution func-
tion then compares the receivedid cnt and recorded
id cnt; then, it ignores the notification because the
receivedid cnt is smaller than the recordedid cnt.
Thus, a single-step execution function can debug a
mobile agent even when the agent frequently migrates
during debugging.

3.3 Reproduction Function

To discover the cause of a bug, we must execute a pro-
gram repeatedly to narrow down the cause. However,
the migration and interaction characteristics of a mo-
bile agent make it difficult to find the cause because
the result of migration and interaction is different ac-
cording to each situation. Therefore, we propose a
reproduction function, which records the behavior of

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

192



(a) Reproducing agent state.

(b) Reproducing interaction.

Figure 4: Reproducing agent state and interaction.

a mobile agent and reproduces a past agent behavior.
Using this information, programmers can confirm the
behaviors as often as they want without executing a
program repeatedly, thus helping them to identify the
causes of bugs.

3.3.1 Migration

To reproduce a bug, it is necessary to reproduce the
state of the debugging program. However, the migra-
tion of a mobile agent is affected by the condition of
the network at that time. To avoid this, we use the
characteristic of a mobile agent. The migration of a
mobile agent is implemented by the following steps
(Satoh, 2006):

Step 1. The runtime system on the source computer
suspends the execution of the agent.

Step 2. It marshals the agent into a bit chunk that can
be transmitted over a network.

Step 3. It transmits the chunk to the destination com-
puter through the underlying network protocol.

Step 4. The runtime system on the destination com-
puter receives the chunk.

Step 5. It unmarshals the chunk into the agent and
resumes the agent.

Here, the chunk, which contains the state of the
mobile agent inside, is created (marshaled) when a
mobile agent migrates. Therefore, we record the
chunk and use the recorded chunk when a mobile

agent migrates. This enables us to avoid the effect
of the network condition.

3.3.2 Interaction

Mobile agents interact with other mobile agents.
Therefore, to discover the cause of a bug, the debug-
ger needs to reproduce the interactions that led to the
problem. To reproduce the interactions, we need to
record the behavior of all partner agents.

The difficulty in doing this reproduction is that
many mobile agents are running on a system. There-
fore, we record only the effect from partner agents.
Here, the interactions of mobile agents are real-
ized by message passing. Therefore, we record a
sent message, which is the message the agent sends
to the partner, andreply message, which is the mes-
sage to which the partner agent replies as a key-value
pair. When the reproduction function reproduces the
interaction, the function uses recorded messages in-
stead of partner agents.

3.3.3 Reproducing Behaviors

A reproduction function reproduces the behaviors of a
mobile agent. The reproduction function builds a vir-
tual agent runtime environment for executing mobile
agents. The function restores the mobile agent from a
recorded chunk and executes the mobile agent on the
virtual agent runtime environment. The virtual agent
runtime environment has only one computer and one
mobile agent that the function has recorded. Thus, it
reproduces migration and interactions virtually using
recorded chunks and messages.

When the reproduction function reproduces the
migration of a mobile agent, the function replaces the
state of the mobile agent from the current chunk to the
next chunk (Figure 4(a)). Thus, we can reproduce the
migration irrespective of network conditions.

When an agent tries to interact with a part-
ner agent, the reproduction function steals the
sent messagewithout sending it to the partner. The
function obtains thereply messagewhich is the
value of thesent messageby searching with the
sent messagefrom recorded messages. The function
hands thisreply messageto the agent instead of re-
plying the message from partner agent (Figure 4(b)).
Thus, the reproduction function can reproduce the in-
teraction.

A�Framework�to�Mitigate�Debugging�Difficulty�on�Agent�Migration

193



Figure 5: Overview of the debugger.

4 IMPLEMENTATION AND
EVALUATION

We have implemented a prototype of our debugger
on a mobile agent framework called Maglog (Kawa-
mura et al., 2005). To evaluate our proposed debug-
ger, we have experimented by using two applications
that were developed on Maglog.

4.1 Implementation of the Debugger

Maglog is implemented by extending PrologCafé
(Banbara et al., 2005), which can run on JVM. Prolog-
Café has a Prolog-to-Java source-to-source translator
and a Prolog interpreter. The mobile agent of Ma-
glog is implemented by extending the Prolog class,
which has a Prolog engine. When a mobile agent mi-
grates, the agent runtime environment converts a mo-
bile agent state to a chunk by java object serialization
(Oracle Corporation, 2014) and transmits it to another
computer.

4.1.1 Construction of the Debugger

Our proposed debugger consists of adebug modules
located on each computer and adebug client lo-
cated on the programmer’s computer (Figure 5). A
debug modulerecords the event logs of agent be-
haviors, such as agent migrations of mobile agent
behaviors running on its computer. Adebug client
provides a user interface to debug for program-
mers and communicates withdebug modules. Both
debug moduleand debug client have an HTTP
server. Thedebug clientsends debug requests to
debug modules. A debug modulesends a debug re-
sult to thedebug client.

4.1.2 Searching Methods

Our proposed search function has two searching
methods. One is the flooding method, which sends

the search query through every outgoing link except
the one on which it arrived. The other is the forward-
ing method, which tracks the route of mobile agent
migration by sending the search query to the destina-
tion of the mobile agent migration by using the mi-
gration log.

The flooding method is used for searching many
mobile agents or computers, such as searching
agentname, because this method can spread the
search query among many computers. Searching the
migration route is realized by tracing the migration
log by the forwarding method. The programmer can
thereby check an agent and its route.

4.1.3 Single-step Execution Function

To use the single-stepping execution function and
the breakpoint function, we find the mobile agent
to debug by the search function. When a pro-
grammer sets a breakpoint to a mobile agent, a
debug clientsends a request to set the breakpoint
to the debug moduleon which the mobile agent is
running. Thedebug modulesets the breakpoint on
the mobile agent. When the mobile agent executes
the breakpoint, thedebug moduleinterrupts the ex-
ecution of the mobile agent and sends its state to
the debug client. The debug clientshows the pro-
grammer the mobile agents state. Similarly, when
a programmer performs the mobile agent single-
step execution, thedebug clientsends a request, the
debug moduleinterrupts the execution of the mobile
agent, and replies with the state of the mobile agent.

Figure 6 shows the user interface of the single-
stepping function. The top of the window shows the
IP address in which the mobile agent is running. The
right side of the window shows the current predicate
that the mobile agent is executing. The left side of the
window shows the code of the mobile agent.

This shows the situation where the mobile agent
migrates from 192.168.132.56 to 192.168.132.55. At
the left, a programmer sets the breakpoint togo,
which is a built-in predicate for migration in Ma-
glog, and the mobile agent is interrupted there. The
window after the single-step execution is at the right
in the figure. The current IP address changes to
192.168.132.55 and the current predicate changes to
retract. Therefore, the programmer can continue the
single-step execution function even if a mobile agent
migrates to another computer during debugging.

4.1.4 Reproduction Function

When a programmer notices that something is wrong
in the system, the programmer sets a mobile agent to

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

194



Figure 6: User Interface of the single-stepping function.

Figure 7: Overview of reproduction.

debug. Debug modulerecords the chunk and mes-
sages of the mobile agent.Debug clienthas a virtual
agent runtime environment that a mobile agent exe-
cutes. Debug clientrestores the chunk and executes
the mobile agent on the virtual agent runtime. envi-
ronment (Figure 7).

When a programmer sets the breakpoint for the
mobile agent,debug clientdownloads the chunk and
messages from thedebug module. Debug clientre-
stores the past state of the mobile agent and executes
it. Reproduction is realized as follows.

• When the mobile agent tries to migrate, the re-
production function downloads the next chunk
and recorded messages from the destination
debug module.

• When the mobile agent tries to interact, the repro-
duction function hands a recorded message to the
mobile agent.

• When the mobile agent executes the breakpoint,
the debug clientinterrupts the execution of the
mobile agent.

4.2 Evaluation

We implemented two applications for the evaluation
of our debugger. The first application is a distributed

hash table (DHT) and the second application is a ho-
tel reservation application (HOTEL). Table 1 shows
the bugs that occurred in the implementation of each
application.

When we were developing the DHT application,
it failed to obtain a value with a key from the ta-
ble. In this DHT application, a mobile agent named
“get agent” migrated from one computer to other
computers to search for a value related with a key.
After “get agent” finished searching for the value, the
agent showed its result to us. However, we could not
obtain the result. Therefore, we noticed that the ap-
plication has bugs.

On this debugging, “getagent” did not come back
to our computer. We guess that the cause of it is that
the agent died or failed to migrate on the destination
computer. Therefore, we need to confirm the follow-
ing:

• Whether the agent is alive or not;

• Where the agent is running on.

In order to confirm this, we searched a location of
“get agent” by the search function. The result of the
search is that this agent was running on an unexpected
computer. We noticed that the agent failed to migrate.
Next, we should guess the cause of it. In this applica-
tion, “get agent” read a destination address from the
address list managed by “networkagent”. Therefore,
we should confirm following:

• Whether the address in the address list is correct;

• Whether the process after reads is succeeded.

Therefore, we restored the previous state, in which the
agent migrated to the unexpected computer, by a re-
production function, and confirmed the migration by
the single-step execution function. This caused us to
notice that “getagent” read a wrong destination ad-
dress and a list of addresses did not have a correct
one. Thus, we noticed that this bug was caused by
“network agent”.

A�Framework�to�Mitigate�Debugging�Difficulty�on�Agent�Migration

195



Table 1: Bugs and the useful debugging functions.

bugs search stepping reproduction

fail to store value X X X

fail to get value X X X

D
H

T
fail to join network X X

fail to initialize hotel information X

lost a part of information X X

H
O

T
E

L

search wrong data X X X

Table 2: Number of keystrokes and clicks.

logs keystrokes clicks

without our debugger 869 167
with our debugger 514 128

reduction rate 41% 24%

While confirming the locations of mobile agents
without our proposed debugger, we need to insert
print statements and confirm each log dispersed.
While finding defective functions and confirming the
values of an instance, migrations of a mobile agent
make it difficult to debug even when using an ordi-
nary remote debugger because we lose a mobile agent
when it migrates. Furthermore, the same bugs may
not even occur if we deploy the same agent because
the situation may change.

In contrast, when debugging with our proposed
debugger, programmers can obtain the locations of
mobile agents easily using the searching function.
Because the single-step execution function can grasp
the behaviors of a mobile agent, a programmer can
be debugging even when the mobile agent migrates to
other computers. The reproduction function can help
us to confirm the causes of bugs by restoring a past
state of a mobile agent.

Table 2 shows the number of keystrokes and clicks
on debugging. As shown in Table 2,the keystroke
count was reduced by 41% and the click count was
reduced by 24% by our proposed debugger. Thus,
our proposed debugger can effectively debug a mo-
bile agent system.

LAM (Logical Agent Mobility)

5 RELATED WORKS

There are description languages to define interactions
and scenarios among agents. If the definitions of
interactions and scenarios are valid logically, native
source codes generated from these definitions do not
have any bugs. Mobile Object-Z (MobiOZ) (Taguchi
and Song Dong, 2002), LAM (Logical Agent Mo-
bility) (Xu et al., 2003) are description languages

that define interactions and scenarios among agents
for a mobile agent system. These languages verify
the model of a mobile agent application by the Sim-
ple Process meta language Interpreter model checker
(Ben-Ari, 2008) and the Construction and Analysis of
Distributed Processes toolbox (Garavel et al., 2011).
However, To apply these approaches to an existing ap-
plication, a programmer must design and implement
it again for these languages. Furthermore, these ap-
proaches are not realistic in practice because the costs
increase with an increasing scale and complexity of
the applications. Furthermore, some applications are
not compatible with these approaches.

Several researchers have proposed a tool to vi-
sualize interactions among agents (Ndumu et al.,
1999; Lam and Barber, 2005; Padgham et al., 2005;
Vigueras and Botia, 2008; Cabac et al., 2009), but
these tools do not focus on the mobility of agents.
JADE (Bellifemine et al., 2010) and Agent Factory
(Collier, 2007; Brazier et al., 2002) is a platform for
multi-agent systems that includes a debugger. These
platforms support the mobility of agents; neverthe-
less, their debuggers do not support and focus on the
mobility of agents.

(Lynch and Rajendran, 2007) suggested re-
quirements for integrated development environments
(IDEs) to support the construction of multi-agent sys-
tems, but they do not focus on agent mobility. MiLog
(Fukuta et al., 2000) is a framework (platform) includ-
ing an IDE for mobile agent systems that can visualize
the locations of agents in a network and dump logs of
each agent. However, it supports a debugging only on
the visualization of agent locations.

6 CONCLUSION

In this paper, we discussed problems in debugging
a mobile agent system, and proposed the debugging
functions: searching, single-step execution, and re-
production function. Experimental results show that
our proposed functions can mitigate debugging diffi-
culty on agent migration.

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

196



REFERENCES

Banbara, M., Tamura, N., and Inoue, K. (2005). Prolog
cafe : A prolog to java translator system. InProc. of
the 16th International Conference on Applications of
Declarative Programming and Knowledge Manage-
ment, pages 1–11.

Bellifemine, F., Caire, G., Trucco, T., and Rimassa, G.
(2010).JADE PROGRAMMERS GUIDE.

Ben-Ari, M. (2008).Principles of the Spin Model Checker.
Springer London.

Brazier, F. M. T., Overeinder, B. J., van Steen, M., and Wi-
jngaards, N. J. E. (2002). Agent factory: generative
migration of mobile agents in heterogeneous environ-
ments. InProc. of the 2002 ACM symposium on Ap-
plied computing, pages 101–106.

Cabac, L., Dörges, T., Duvigneau, M., and Moldt, D.
(2009). Requirements and tools for the debugging
of multi-agent systems. InProc. of the 7th German
conference on Multiagent system technologies, pages
238–247.

Collier, R. (2007). Debugging agents in agent factory. In
Proc. of the 4th international conference on Program-
ming multi-agent systems, pages 229–248.

FIPA (2014). FIPA. Web. http://www.fipa.org.
Fukuta, N., Ito, T., and Shintani, T. (2000). Milog: A mo-

bile agent framework for implementing intelligent in-
formation agents with logic programming. InPacific
Rim International Workshop on Intelligent Informa-
tion Agents.

Garavel, H., Lang, F., Mateescu, R., and Serwe, W. (2011).
CADP 2010: a toolbox for the construction and analy-
sis of distributed processes. InProc. of the 17th inter-
national conference on Tools and algorithms for the
construction and analysis of systems, pages 372–387.

Hurson, A. R., Jean, E., Ongtang, M., Gao, X., Jiao, Y.,
and Potok, T. E. (2010). Recent Rdvances in Mo-
bile Agent-Oriented Applications. InMobile Intelli-
gence: Mobile Computing and Computational Intelli-
gence, Wiley Series on Parallel and Distributed Com-
puting. John Wiley & Sons, Inc., 1st edition.

Kawamura, T., Motomura, S., and Sugahara, K. (2005).
Implementation of a logic-based multi agent frame-
work on java environment. InProc. of IEEE Interna-
tional Conference on Integration of Knowledge Inten-
sive Multi-Agent Systems, pages 486–491.

Lam, D. N. and Barber, K. S. (2005). Debugging agent
behavior in an implemented agent system. InProc. of
the Second international conference on Programming
Multi-Agent Systems, pages 104–125.

Leach, P., Mealling, M., and Salz, R. (2005). A Universally
Unique IDentifier (UUID) URN Namespace. Request
for Comments 4122.

Lynch, S. and Rajendran, K. (2007). Breaking into industry:
tool support for multiagent systems. InProc. of the 6th
international joint conference on Autonomous agents
and multiagent systems, pages 136:1–136:3.

Milojicic, D., Breugst, M., Busse, I., Campbell, J., Covaci,
S., Friedman, B., Kosaka, K., Lange, D., Ono, K., Os-
hima, M., Tham, C., Virdhagriswaran, S., and White,

J. (1998). Masif: The omg mobile agent system in-
teroperability facility. Personal Technologies, pages
117–129.

Ndumu, D. T., Nwana, H. S., Lee, L. C., and Collis, J. C.
(1999). Visualising and debugging distributed multi-
agent systems. InProc. of the third annual conference
on Autonomous Agents, pages 326–333.

Oracle Corporation (2014). Object Serialization. Web.
http//docs.oracle.com/javase/tutorial/jndi/objects/
serial.html.

Outtagarts, A. (2009). Mobile Agent-based Applications :
a Survey.International Journal of Computer Science
and Network Security (IJCSNS), pages 331–339.

Padgham, L., Winikoff, M., and Poutakidis, D. (2005).
Adding debugging support to the prometheus method-
ology. Eng. Appl. Artif. Intell., 18(2):173–190.

Satoh, I. (2006). Mobile agents. In Scerri, P., Vincent, R.,
and Mailler, R., editors,Coordination of Large-Scale
Multiagent Systems, pages 231–254. Springer US.

Taguchi, K. and Song Dong, J. (2002). An Overview of
Mobile Object-Z. InProc. of the 4th International
Conference on Formal Engineering Methods: Formal
Methods and Software Engineering (ICFEM-2002),
pages 144–155.

Vigueras, G. and Botia, J. A. (2008). Tracking causality by
visualization of multi-agent interactions using causal-
ity graphs. InProc. of the 5th international conference
on Programming multi-agent systems, pages 190–204.

Xu, D., Yin, J., Deng, Y., and Ding, J. (2003). A formal
architectural model for logical agent mobility.IEEE
Trans. on Softw. Eng., 29(1):31–45.

A�Framework�to�Mitigate�Debugging�Difficulty�on�Agent�Migration

197


