
Implementation of Logging for Information Tracking
on Network

Akihiko Maeta
Graduate School of Engineering, Tottori University
4-101 Koyama-Minami, Tottori 680-8550, Japan

s082050@ike.tottori-u.ac.jp

Kenichi Takahashi
Graduate School of Engineering, Tottori University
4-101 Koyama-Minami, Tottori 680-8550, Japan

takahashi@ike.tottori-u.ac.jp

Takao Kawamura
Graduate School of Engineering, Tottori University
4-101 Koyama-Minami, Tottori 680-8550, Japan

kawamura@ike.tottori-u.ac.jp

Kazunori Sugahara
Graduate School of Engineering, Tottori University
4-101 Koyama-Minami, Tottori 680-8550, Japan

sugahara@ike.tottori-u.ac.jp

Abstract—In recent years, information leakage cases happen
frequently and are one of big problems. 70% of such a cases are
caused by human factors such as mismanagements and/or careless
operations. Such a factors can be removed by the control of infor-
mation flow and/or the check of computer operations. Therefore,
some studies to control information flows have been proposed.
However, almost studies focus on single computer. Thus, it is
insufficient in recent working situations which exchange a lot of
information through network.

In this paper, we propose a framework to track sensitive
information flow on multiple computers at kernel. The framework
hooks system calls which may cause the diffusion of information,
maintains their logs, and uses their logs to trace information.
As the result, we can trace information on multiple computers.
It would be useful for the control of the operations which uses
sensitive information.

I. INTRODUCTION

In recent years, the opportunities to manage the information
as not only papers but also digital data on computers are
increasing. This situation enables us to easily diffuse informa-
tion. For example, we can easily share information by using
a mailing list, a shared folder, a usb memory and so on.
This, however, increases the risk of information leakage. For
example, we may share a wrong file including confidentiality
information instead of an ordinary file by mis-operation. It will
cause information leakage.

In the report from NPO Japan Network Security Asso-
ciation on 2011 [1], 70% of information leakage cases are
caused by mismanagement and/or careless operation, such as,
the mistake of T

¯
o: header in an e-mail, the an attached file.

Information leakage caused by technical factors on a computer,
such as malware, illegal access, security holes, are about only
5%. Thus, it is important to cut information leakage cases
caused by the carelessness of human being. Therefore, some
studies to trace information flows have been proposed.

DF-Salvia[2] and Privacy-aware OS Salvia[3] propose an
operating system which enables us to track information flow.
[4] and [5] gives a warning when a user tries to copy a file
to a usb memory. [6] and [7] tries to prevent information
leakages from e-mails by the check of a superior. Their

studies, however, focus on single computer. Thus, they are
insufficient in recent working situations which exchange a lot
of information through network.

In this paper, we proposes a framework to track sensitive
information on multiple computers at kernel. The framework
hooks system calls which may cause the diffusion of in-
formation, maintains their logs, and uses their logs to trace
information. As the result, we can know information flows on
multiple computers. It would be useful for the control of the
operations which may cause information leakage.

The remainder of this paper is structured as follows.
Section II describes when the diffusion of sensitive information
occurs at kernel and presents the problems when tracking
sensitive information. Section III shows implementation details
to solve the problems shown in Section II. Section IV examines
our framework and concludes the paper at Section V.

II. TRACKING SENSITIVE INFORMATION

We propose a framework to track sensitive information
on multiple computers. The sensitive information is highly
confidential information such as credit card number, personal
information and so on. Since such a information is usually
managed as a file unit, we focus on files as the objects for
tracking. Further, we should trace the sensitive information
without depending on applications. All the access to files is
gone through kernel level operations. Therefore, we can trace
the diffusion of all sensitive information by recording file
operations at kernel level. Figure 2 illustrates the overview
of the diffusion of sensitive information at kernel.

Fig. 2. Diffusion of Sensitive Information

978-1-4799-2845-3/13/$31.00 ©2013 IEEE392

Fig. 1. Overview of the Implementation

As shown in Figure 2, all the diffusion of sensitive in-
formation is caused through process by read, write and IPC
(InterProcess Communication). For example, when process P1

writes out information to a file F2 after P1 reads a file F1

which has sensitive information, the sensitive information of
F1 may be written in F2. Here, the process can know only
reading/writing a file. It is difficult for a process at kernel
level to know which information is read from and/or written
in a file. Therefore, we trace the possibility of the diffusion of
sensitive information.

The right illustration of Figure 2 is the overview of the
diffusion of sensitive information caused by IPC. In this
example, after the process P2 reads a file F3, P2 communicates
with the process P3 by IPC. Then, the information in F3 may
propagate to P2. Therefore, the information which P3 writes
down in a file F4 may include the information in F3. Thus
we have to monitor operations related to read, write and IPC
for tracking sensitive information. There are the following
problems to be solved for tracking sensitive information at
kernel level:

Problem 1:
¯

Distinction of files which includes sensitive
information,

Problem 2:
¯

Judgement of processes which may read sen-
sitive information,

Problem 3:
¯

Judgement that information received by IPC
may be sensitive information or not.

The first problem is the distinction of files which includes
sensitive information. If a file has not any sensitive informa-
tion, it is meaningless to trach the file. Therefore, we have
to distinguish the information read by a process may include
a sensitive information. In order to distinguish it, we prepare
a sensitive file table, which manages files including sensitive
information. By refering the sensitive file table, the system
judges whether a file includes sensitive information or not.

The second problem is the judgement of processes which
may read sensitive information. When a process writes some

information into a file, we have to know the information may
be sensitive. That is, the system has to know the process
has read a file including sensitive information in a past. We
introduces a reading file table to manage files a process has
read. When a process reads a file, the file information is added
in the reading file table. When the process writes information
into other file, the system can judge the information may
include sensitive information by seeing the reading file table.

The last problem is the judgement whether information
received by IPC may be sensitive information or not. The
diffusion of information on network are caused by IPC. If
a process receives information by IPC from other process
reading sensitive information, the information may include
the sensitive information. Then, the reading file table of the
receiver process has to be updated. The receiver process,
however, does not know the information received is sensitive
or not. Therefore, the sender process informs it as a tag to
the receiver process. The receiver process confirms that the
information received is sensitive or not by the tag.

III. IMPLEMENTATION

We implemented a system for tracing sensitive information
on linux kernel 2.6.22[8]. The targets of tracing sensitive
information are file operation and IPC, especially socket
communication. The file operation and IPC are implemented
as system calls in kernel unit. Therefore, the system hooks
system calls and checks the diffusion of sensitive information.
We focus on read/write and sendto/recvfrom system call for
tracing sensitive information. Figure 1 shows the overview of
the system.The system consists of sensitive file table, reading
file table and tag with transmission data.

A. Sensitive File Table

Information has been diffused when a process writes data
into a file after the process reads information from a file.
For tracing sensitive information, the system has to judge the

978-1-4799-2845-3/13/$31.00 ©2013 IEEE 393

16:03:37 PC1 kernel: File Registered : UID:500 FILE:/home/comp1/d.txt

16:03:42 PC1 kernel: Read File : PID:3752 FILE:/home/comp1/d.txt

16:03:43 PC1 kernel: Write File : PID:3752 FILE:/home/comp1/e.txt(/home/comp1/d.txt) DEV:800002

16:03:43 PC1 kernel: File Registered : UID:500 FILE:/home/comp1/e.txt

16:04:36 PC1 kernel: Read File : PID:3854 FILE:/home/comp1/e.txt

16:04:36 PC1 kernel: Send File : PID:3854 send 127.0.0.1:37685 to 127.0.0.2:10000 FILE:/home/comp1/e.txt
(a) Logs in Computer PC1

16:04:36 PC2 kernel: Receive File : PID:3850 receive 127.0.0.2:10000 from 127.0.0.1:37685 FILE:/home/comp1/e.txt

16:04:36 PC2 kernel: Write File : PID:3850 FILE:/home/comp2/recv.txt(/home/comp1/e.txt) DEV:800002

16:04:36 PC2 kernel: File Registered : UID:500 FILE:/home/comp2/recv.txt

16:05:21 PC2 kernel: Read File : PID:3871 FILE:/home/comp2/recv.txt

16:05:21 PC2 kernel: Write File : PID:3871 FILE:/home/comp2/m.txt(/home/comp2/recv.txt) DEV:800002

16:05:21 PC2 kernel: File Registered : UID:500 FILE:/home/comp2/m.txt
(b) Logs in Computer PC2

Fig. 3. Examination Results

information read by a process includes sensitive information
or not. Its judge is done by using sensitive file table. In
our system,the sensitive file table has to be managed in the
kernel unit. Because we the system traces the diffusion of
sensitive information at kernel level. Therefore, we implements
functions markSecret by using proc filesystem that allows us
to access and change the data in kernel from the user mode.

When a user wants to treat a file ”/home/comp1/secret.txt”
a sensitive information, the user calls

markSecret(ADD,/home/comp1/secret.txt)
from a console. Then, the path ”/home/comp1/secret.txt” are
appended in the sensitive file table. Thus, we can manage the
sensitive file table from the user mode. When a process reads
a file, the system starts tracing the file if and only if the path
of the file is included in the sensitive file table.

B. Reading File Table

When a process writes sensitive information into a file,
the sensitive information is diffused. It is, however, difficult to
judge what information is written in the file at kernel level.
Therefore, we prepare a reading file table in each processes.
A process records list of a file that the process read in a past,
and 3 bytes from the head of data the process reads. In linux
kernel, various information of each process has been managed
in task struct structure. Therefore, we prepare a reading file
table in task struct.

Reading/writing a file is realized by read/write sys-
tem call in linux. Therefore, we appended program codes to
operate reading file table into read/write system call. In our
implementation, the read system call, first, gets the file path
from File Descripter, and checks the file path is listed or not
in the sensitive file table. Then, the read system call puts the
file path and 3 bytes from the head of data the process read
into the reading file table.

Write system call, we first checks any information is listed
in the reading file table or not. If not listed anything, it does
not do any special behavior since the process does not deal
with sensitive information. If listed, the write system call
compares 3 bytes from the head of data the process writes
with all 3 bytes listed in reading file table. If they are matched,
the data written in a file may includes sensitive information.

Therefore, the write system call puts the file path into sensitive
file table. Thus, the system can trace the diffusion of sensitive
information in file operations.

C. Tag for Data Transmission

As explained in previous section, it is also difficult to know
what data is transmitted between processes in IPC at kernel
level. Therefore, we attached a tag with transmitted data from
a sender to a receiver process. Figure 4 is the structure of
a tag with transmitted data. The tag with transmitted data is
structured in order of PATH_SIZE, the length of the path,
path and data transmitted.

Fig. 4. Structure of a Tag with Transmitted Data

Here, we focus on only socket communications as IPC. The
socket communications is realized by sendto/recvfrom
system call. The sendto system call, first, checks the reading
file table, and connects tag with the transmitted data if the data
may include sensitive information. Then, the sender process
transmits connected one to a receiver process. The receive
process receives it by the recvfrom system call. The recvfrom
system call checks that a tag is attached with the received data
or not. If a tag is attached, the receiver process has to deal it
as sensitive information, thus, puts the list in the tag into own
reading file table. Thus, the system can trace the diffusion of
sensitive information among multiple computers.

IV. EXAMINATION

We examine the diffusion of sensitive information by file
operations and socket communications can be traced. In this
examination, we prepared two computers PC1 and PC2 which

978-1-4799-2845-3/13/$31.00 ©2013 IEEE394

IP address are 127.0.0.1 and 127.0.0.2; used copy command for
file operations; and prepared a socket communication program.
In the socket communication program, one side reads a file and
transmits it to other side; the other side receives it and writes
it down on a file. The examination results were conducted on
the following steps (Figure 5):

Fig. 5. Examination Steps

1) ”/home/comp1/d.txt” is registered as a file including
sensitive information in computer PC1,

2) ”/home/comp1/d.txt” is copied to ”/home/comp1/-
e.txt” in PC1,

3) PC1 reads ”/home/comp1/e.txt” and transmits it to
computer PC2,

4) The process in PC2 which received data from PC1

writes it down on ”/home/comp2/recv.txt,”
5) ”/home/comp2/recv.txt” is copied to ”/home/comp2/-

m.txt” in PC2.

The results in this examination are shown in Figure 3. The
log consists of time, computer name, operation, user ID (UID)
or process ID (PID), and operational detail, in order from the
left to the right.

The first line of logs in PC1 shows ”/home/comp1/d.txt” is
registered in the sensitive file table as a file including sensitive
information. Next lines 2 to 4 were generated from step 2. We
can confirm the process 3752 reads ”/home/comp1/d.txt” from
line 2, and writes it to ”/home/comp1/e.txt” from line 3. Here,
since the process 3752 reads a file ”/home/comp1/d.txt” reg-
istered in the sensitive file table, ”/home/comp1/e.txt” should
be also registered in the sensitive file table. We can confirm it
in line 4. As the result, the diffusion of sensitive information
caused by file operations has been traced.

After that, PC1 reads ”/home/comp1/e.txt” and trans-
mits it to a computer PC2 at step 3. Therefore, their
logs are written in line 5 and 6 in PC1. Here the tag
”/home/comp1/e.txt” is attached with transmitted information,
because ”/home/comp1/e.txt” is listed in the sensitive file
table. Then, the process 3850 in computer PC2 receives
data, and writes it down on ”/home/comp2/recv.txt” at step
4. Here, since the process 3850 notices the tag attached,
”/home/comp2/recv.txt” is also registered in the sensitive file
table in PC2. We can confirm them from the line 1 to 3 of logs
in PC2. Thus, the diffusion of sensitive information among
multiple computers can be traced.

Remained logs, the line 4 to 6 in PC2, were generated from
step 5. As the same with step 2, ”/home/comp2/m.txt” is reg-
istered in the sensitive file table. As the result, we can confirm
the sensitive information in ”/home/comp1/d.txt” may be dif-
fusing to ”/home/comp2/m.txt” through ”/home/comp1/e.txt”
and ”/home/comp2/recv.txt.” Threfore, we are able to care the
dealing with these files, for example, when they are transmitted
to outside of a company, copied to a usb memory and so on.

V. CONCLUSION

In this paper, we implemented the tracking system of sensi-
tive information among multiple computers in linux kernel. In
this system, we introduced sensitive file table, reading file table
and tags attached with tranmitted information for the manage-
ment of sensitive information. Examination results shows our
system can trace the diffusion of sensitive information caused
by file operation and socket communications.

The future works include to implement the tracing mech-
anism into other IPC, such as pipe, shared memory, memory
mapping and so on.

ACKNOWLEDGMENT

This research has been supported by a Grant-in-Aid for
Young Scientists (B), 23700098 and Grant-in-Aid for Scientific
Research B, 23300027.

REFERENCES

[1] NPO Japan Network Security Association,Information Security Incident
Survey Report 2012, http://www.jnsa.org/result/incident/2012.html

[2] Shozo Ida, Yusuke Kawashima, Takehiro Kashiyama, Eiji Takimoto,
and Koichi Mouri,Design and implementation of DF-Salvia which
provides access control based on data flow, 2011 Information Process-
ing Society of Japan. The 73rd national convention lecture memoirs,
Vol2011No1pp511-513(3 2011)

[3] Kaji Teruyuki, Iwanaga Masayuki, Mouri Koichi, A construction of
Privacy-aware OS Salvia based on Linux Security Module, Information
Processing Society of Japan. The 71rd national convention lecture
memoirs, Vol3No1pp365 - 366(3 2009).

[4] Iwanaga Masayuki, Mouri Koichi, File access control based on target
devices for preventing data leakage, Information Processing Society of
Japan. The 71rd national convention lecture memoirs, Vol3No1pp355 -
356(3 2009).

[5] Toshihiro Tabata, Satoshi Hakomori, Kei Ohashi, Shinichiro Uemura,
Kazutoshi Yokoyama and Hideo Taniguchi, Tracing Classified Infor-
mation Diffusion for Protecting Information Leakage 2009 Information
Processing Society of Japan, Vol50No9pp2088-2102(9 2009)

[6] Active! gate. http://www.transware.co.jp/product/ag/sv.html
[7] GRIDY Mail Powered by NIFTY Cloud.

http://knowledgesuite.jp/service/niftymail/niftymail-detail01.html
[8] Daniel P. Bovet, Marco Cesati (11,2005), Understanding the Linux

Kernel, 3rd Edition , O’Reilly Media.

978-1-4799-2845-3/13/$31.00 ©2013 IEEE 395

