2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

Program Conversion for the Protection of Personal
Information

Kuto, Kuniaki*, Takahashi, Kenichi*, Kawamura, Takao* and Sugahara, Kazunori*
* Department of Information and Electronics, Graduate School of Engineering
Tottori University, 4-101 Koyama Minami Tottori 680-8550, Japan
Email: {s082019, takahashi, kawamura, sugahara} @ike.tottori-u.ac.jp

Abstract—Some of Internet services request us to provide our
personal information. When we use their services, we have to
provide our personal information even if we cannot trust their
service providers. This may cause the abuse of their personal
information. Therefore, we propose a framework that prevents
service providers from abusing users’ personal information. In
our framework, a user selects a method to use his/her information,
and compels the service provider to use the method. Since the
personal information is used through the method selected by the
user, the user is able to prevent the service provider from the
abuse of his/her personal information. Thus, the user can relief
to provide his/her personal information to the service provider.
We have some problems to be solved for the realization of our
framework. In this paper, we discuss a way to install a method
selected by a user into a program a service provider has.

I. INTRODUCTION

The Internet services are already fundamental services in
our daily and business life. For example, shopping sites, hotel
reservation services and Internet auctions are popularly used.
Their services request us to provide our personal information.
However, when we provider our personal information once to
the service provider, we cannot check anymore how our per-
sonal information is used by the service provider. Furthermore,
a lot of cases such as infomation leakage, unauthorized use,
phishing fraud and so on[1], [2], happen. Thus, we suffer for
abusing of our personal information from service providers.
We can avoid these cases when we should not provide our
personal information to service providers. It, however, results
in losing benefits to use the Internet services. Some of security
techniques, such as authentication protocols, cryptographic
algorithms, privacy policy and so on, are used for securing
the Internet services. However, these techniques are applied
by a service provider. Therefore, we cannot confirm the
security techniques are really applied in the Internet services.
Furthermore, even if we know more secure techniques, we
cannot use their techniques. Thus, we wish a framework that
enables to prevent service providers from abusing our pesonal
information.

In this paper, we propose a framework that allows users
to select a method for processing their personal information
and compels the service provider to use the method. Our
personal information is usually handled by a program that
a service provider has. Therefore, our framework installs a
method selected by a user into the program. Since the personal
information is used through the method selected by the user,
the user is able to prevent the service provider from abusing
his/her personal information. As a result, the user can relief to
provide personal information to the service provider. To realize

978-0-7695-5088-6/13 $31.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.225

1599

our framework, we have some problems to be solved. In this
paper, we discuss a way to install a method selected by a user
into a program a service provider has.

The remainder of this paper is structured as follows.
Section 2 describes the related studies. Section 3 presents
the overview of our framework. After that, we we defines
protection policy and use policy, which helps installing a
method selected by a user into a program, at Section 4 and 5.
Section 6 shows a way to install a method into the program.
The paper is concluded in Section 7.

II. RELATED STUDIES

Cryptographic algorithms such as symmetric and public-
key algorithms as well as techniques based on them such as
digital signatures and public key infrastructure (PKI) have been
proposed [3]. These algorithms and techniques aim at prevent-
ing message interception or identification of communication
partners. Thus, they ensure message confidentiality, integrity,
and availability of the message against malicious exploitation
by third parties. Such techniques, however, do not prevent
communication partners from abusing sensitive information
released to them.

We often find a link on certain websites that points to
the privacy policy adopted by that websites; this is termed
as Privacy Policy on Yahoo!, Privacy on IBM, and so on.
The privacy policy describes how the company treats personal
information collected from users. The Platform for Private
Preferences (P3P) [4] enables Web sites to express their
privacy policies in a standard format that can be interpreted
automatically by user agents. Thus, user agents can automate
decision-making by comparing a company-defined privacy
policy and user-specified privacy preferences. P3P, however,
does not provide technical assurance that the sites will adhere
to their respective privacy policies.

The Enterprise Privacy Authorization Language (EPAL)
[5] provides fine-grained enterprise privacy policies, which
employees within an organization are required to comply
with. Whereas compliance to EPAL prevents the abuse of
information by employees within an organization; it cannot
provide an assurance to users that the methods used by the
organization to manage their personal information are secure.

Various researchers have attempted to provide users with
the right of information access or services based on trust-
worthiness [6], [7]. Their researches are aimed to developing
trust relationships among users. However, it is difficult to
define a general method for developing trust relationships.

IEEE
computer
® psouety

o

Use pol|cy

Protection policy |-

Protection policy
data base

3) Sends the protection policy
1 5) : Sends a converted information !

Fig. 1. Overview of the Proposed Framework

This is because trustworthiness depends on user conditions
and/or situations. Moreover, trust relationships are not directly
connected to the prevention of information abuse.

Inada et al [8] and Miyamoto et al [9] propose methods
to preserve privacy by forbidding the disclosure of the combi-
nation of information that may lead to the loss of anonymity.
However, these methods cannot preserve privacy nor protect
information when the loss of only a single piece of information
(e.g., credit card number or password) cause a problem.

III. PROPOSED FRAMEWORK

We propose a framework that allows users to select a
method in which their information is protected. A user pre-
vents a service provider from abusing his/her information by
that his/her information is processed through his/her selected
method. In our framework, a user informs a method for
processing his/her information to a service provider. The infor-
mation of the method is defined in protection policy. Protection
policy consists of installation manners of the method. We
can know the manner for the installation of a method into
a program of a service provider by the protection policy,
however, the protection policy has no information about the
program of a service provider. We cannot install a user’s
selected method without information about the program of a
service provider. For example, we do not know, which variable
deals with user’s personal information, which function is
applied to, in the program. Therefore, we introduce a use policy
which defines above information. By getting a use policy, we
can know how the personal information is processing in the
program.

By getting a use policy and a protection policy, we can
install the method into the program of a service provider. The
installation of a method is done by a program conversion

1600

module. The program conversion module can know about
the program of a service provider by reading a use policy,
and manners to install a method a user selected by reading
a protection policy. Figure 1 illustrates the overview of our
framework.

1) A user requests a service to a service provider. Then,
the service provider requests the user to provide a per-
sonal information. The user, however, worries about
providing his/her personal information. Therefore, the
user requests and receives a use policy from the
service provider.

The user can know how his/her information is op-
erated by the use policy. Then, the user accesses
a protection policy database to select a method for
dealing with his/her information he/she can relief, and
get its protection policy.

The user informs the protection policy to the service
provider.

The service provider converts the program which
handles the user’s information according to the pro-
tection policy and use policy by a program conversion
module.

The user converts his/her personal information ac-
cording to the protection policy, and provides the
converted information to the service provider.

The service provider processes the converted infor-
mation through converted program.

2)

3)

4)

5)

6)

The personal information is converted at step 5, thus, the
service provider is not easy to abuse it. On the other hand,
the service provider can operate personal information through
the program converted at step 4. Thus, it can prevent the
service provider from abusing his/her personal information.
We describe the details of protection policy in Section 4, use
policy in Section 5, and program conversion module in Section

<INFORMATION> information </INFORMATION>
<OPERATION> operation </OPERATION>
<EXPLANATION>

The explanation is written in natural language
</EXPLANATION>
<CONVERT-RULE>

rules
</CONVERT-RULE>

Fig. 2. The Structure of Protection Policy

IV. PROTECTION POLICY

The protection policy defines the installation manner of a
method. A program is converted accroding to the protection
policy for the installation of a method. The structure of the
protection policy is shown in Figure 2.

A. Targetted Information and Operatrion

In our framework, a user selects a protection policy defining
a his/her reliable method. It, however, may be troublesome for
users because numerous protection policies are stored in the
protection policy database. Therefore, we put <INFORMA-
TION> and <OPERATION> to pick up appropriate protection
policies from protection policy database. <INFORMATION>
and <OPERATION> are written in machine-readble format.
<INFORMATION> defines a subject that the protection policy
enables to be applied. <OPERATION> defines an operation
applied in the subject. The protection policy database picks up
protection policies, which are possible to apply to a program,
from numerous protection policies, and shows them to the user.

B. Explanation

There are several protection policies picked up by <IN-
FORMATION> and <OPERATION> from protection policy
database. When we select one protection policy from them,
we have to understand how each protection policies handle
his/her information. Such a information is defined in <EX-
PLANATION>. The value of <EXPLANATION> is written in
natural language. Thus, we can select our reliable protection
policy from them by reading <EXPLANATION>.

C. Program Conversion Rules

Our framework installs a method a user selects into
the program of a service provider. For the installation of
the method, we convert the program according to a pro-
tection policy. Therefore, we define rules to convert a
program in <CONVERT-RULE>. <CONVERT-RULE> con-
sists of <DATA-CONVERT-RULE>, <OPERATION-CON-
VERT-RULE> and <COMMUNICATION-RULE>. Figure 3
shows a brief description of these rules. <DATA-CON-
VERT-RULE> is a rule to convert data (a variable in a
program). <OPERATION-CONVERT-RULE> is a rule to con-
vert an operation. <COMMUNICATION-RULE> is a rule to
control data transmission. A program is converted according
to these rules for the installation of a method described in
<EXPLANATION>.

1601

<CONVERT-RULE>
<DATA-CONVERT-RULE>
converted-data <— method(data)
</DATA-CONVERT-RULE>
<OPERATION-CONVERT-RULE>
new-method(converted-data) <— old-method(data)
</OPERATION-CONVERT-RULE>
<COMMUNICATION-RULE>
data : denied
converted-data : allowed
</COMMUNICATION-RULE>
<CONVERT-RULE>

Fig. 3. Program Conversion Rules

<DATA-CONVERT-RULE>

Even if personal information a user wants to protect is defined
in <INFORMATION>, we cannot protect the untouched per-
sonal information from a service provider. Therefore, we have
to convert personal information to a form which enables to
prevent a service provider from abusing of our personal infor-
mation. Such a rule is defined in <DATA-CONVERT-RULE>.
In a program, our personal information is dealt as a value in
an variable. Therefore, <DATA-CONVERT-RULE> defines a
rule to convert a value in an variable.

As shown in Figure 3, <DATA-CONVERT-RULE> is de-
fined as "converted-data <- method(data).” Con-
verted-data is a variable name for storing a value of
data converted. Data is the name of a variable converted.
Method is a method name for converting the value of data.
For example, when <DATA-CONVERT-RULE> is defined as
"h-pass <- hash (password),’ the value of a variable
named as password is converted by hash method and the
converted value is stored in a variable h-pass.

<OPERATION-CONVERT-RULE>

Since personal information is converted according to <DA-—
TA-CONVERT-RULE>, an operation applied to personal in-
formation in an original program is useless anymore. There-
fore, a rule is required to convert the operation to new operation
which enables to process the converted personal information.
Such a rule is defined in <OPERATION-CONVERT-RULE>.

<OPERATION-CONVERT-RULE> is defined
"new-method (converted-data) <- old-meth-
od(data).” converted-data and data are variable
names. New—method is a method name which enables to
process converted-data. Old-method is a method
name which realizes the operation defined in <OPERATION>.
For example, when <OPERATION-CONVERT-RULE> is

as

defined as “equals(x, h-pass) <- equals(x,
password),” a method equals(x, password) is
converted to a method equals (x, h-pass).

<COMMUNICATION-RULE> Even if personal information is
converted to other data, it is meaningless if a service provider
can receive original personal information from a user. Also,
the data converted by <DATA-CONVERT-RULE> should be
sent to a service provider. Thus, we should be able to control
the transmission of each data. Therefore, we define <COMMU-
NICATION-RULE>.

<COMMUNICATION-RULE> is defined as the pair of a

variable name and a permission. A permission is one of
allowed and denied. If a permission is allowed, the value stored
in its variable is allowed to be sent to a service provider; if
denied, the value is denied to be sent. In the example in figure
3, the transmission code for the value in dat a takes away from
a program and the code for converted-data are added
appropriately.

A program modification module adds, deletes and replaces
codes of a program according to <CONVERT-RULE>. As the
result, a method a user selects is installed into a program a
service provider has. We show more details of the installation
steps in Section 6.

V. USE PoLICcY

A protection policy teaches a program conversion module
a way to install a method, however, it has no information
about a program the method is installed. For example, even
if the program conversion module knows a way to convert
personal information, it does not know which variable stores
the personal information. Furthermore, we have to select a
protection policy from a protection policy database, however
we do not know which protection policies are possible to be
applied in the program of a service provider. Therefore, we
introduce a use policy. By getting a use policy, the program
conversion module can know how the program handles the
personal information. The use policy is composed of <INFOR-
MATION>, <VARIABLE> and <OPERATION>. The structure
of the use policy is shown in Figure 4.

<INFORMAT ION>inf0rmation< INFORMATION>
<VARIABLE>
<NAME>name< /NAME >
<TYPE>type</TYPE>
</VARIABLE>
<OPERATION>
<FORMAT>
<METHOD>(*<PARAMETER>)
</FORMAT>
<METHOD>
<NAME>name< /NAME >
<RETURN>type</RETURN>
</METHOD>
<PARAMETER>
<DATA>information</DATA>
<NAME>name< /NAME>
<TYPE>type</TYPE>
</PARAMETER>
</OPERATION>

Fig. 4. The Structure of Use Policy

<INFORMATION> defines personal information requested
to a user. The user can know the subject of this use policy by
<INFORMATION>. <VARIABLE> is composed of <NAME>
and <TYPE> for indicating a variable storing personal in-
formation in the program. <NAME> defines a variable name,
and <TYPE> defines its variable type. A program conversion
module associates a protection policy with a use policy by
comparing each <INFORMATION>, and knows which variable
stores personal information.

1602

Cstart>

‘ Association between Protection and Use policy‘

|

‘ Lexical and syntactic analysis ‘

——Read a program conversion rule

Yes

‘Applies the program conversion rule‘

Write program

Fig. 6. Steps to Convert a Program

<OPERATION> is composed of <FORMAT>, <METHOD>
and <PARAMETER>, that defines an operaion to be applied
to <INFORMATION>. <FORMAT> shows which variables
are used in the operation. <METHOD> is composed of a
method name (<NAME>) and the type of return value (<RE-
TURN>). <PARAMETER> is composed of <DATA>, <NAME>
and <TYPE>, that define an argument applied to the operation.
A user can know how his/her information is handled in the
program by <OPERATION>.

VI. PROGRAM CONVERSION MODULE

A program conversion module installs a realiable method
for a user into a program a service provider has according to a
protection and a use policy. An example of program conversion
is shown in Figure 5.

In this paper, we use Java as a program converted. In this
example, the program receives a password from a user and
does user authentication by the password. Therefore, the use
policy has the definition of the password. From the use policy,
program conversion module can know the password is stored
in a variable ’p”, and used in an operation “equals(p, sp_p).”
Here, a user worries about raw password to be used. Therefore,
he/she selects an protection policy to encrypt a password '.
The protection policy converts “password” to “en_password”
by “encrypt” method; “en_password” to org_password” by
“decrypt”; “authentication(password, sp_password)” to “au-
thentication(org_password, sp_password).” “password” and
”org_password” are forbidded to sent out, but “en_password”
is allowed. A program conversion module converts a program
according to these rule for the encryption of a password. We
show the steps to convert a program in Figure 6.

"In this example, the user regards the encryption is safe even if the
encryption does not protect a password from a service provider.

<INFORMATION>

password
</INFORMATION>
<VARIABLE>

<NAME> p </NAME>

<TYPE> String </TYPE>
</VARIABLE>
<OPERATION>

equals(p, sp_p)
</OPERATION>

<EXPLANATION>
The policy which a user encrypts the name ,
and communicates.
</EXPLANATION>
<INFORMATION> password </INFORMATION>
<OPERAITON> authentication </OPERATION>
<CONVERT-RULE>
<DATA-CONVERT-RULE id = user>
en_password « encrypt(password)
</DATA-CONVERT-RULE>
</DATA-CONVERT-RULE id = service provider>
org_password « decrypt(en_password)
</DATA-CONVERT-RULE>
<OPERATION-CONVERT-RULE>
(or9 p

</OPERATION-CONVERT-RULE>
<COMMUNICATION-RULE>
password, org_password : denied
en_password : allowed

, Sp_p
sp_p:

<\COMMUNICATION-RULE>
</CONVERT-RULE>

Fig. 5. An Example of Program Conversion

3. p= -receive();

if(eﬁuals(id, sp_id)X
if(equals(p, sp_p)

}/ provides the service

2. }
)A

IF_STATEMENT

VARIABLE_DECLARATION_FRAGMENT

CLASS_INSTANCE_CREATION

[receive]

if(equals(p, sp_p))

SIMPLE_NAME

L]

Fig. 7. Structured Program

A. Association between Protection and Use Policy

At first, a program modification program associates a
protection policy with a use policy. A personal information
a user wants to protect is written in <INFORNATION> of
the protection policy, and a variable storing it in a program
is written in <VARIABLE> of the use policy. Furthermore,
an operation is defined in both policies. Thus, the program
modification program associates them. As the result, it knows
“password” is stored in ’p” in the program, and the operation
for “authentication” is “equals(p, sp_p).”.

Next, we notice “sp_password” is used in “authenti-
cation(org_password, sp_password).” Here, “org_password”
is defined in a protection policy but ”sp_password” is

protection policy

1603

program before conversion

3. p= rece\v.e():

the user sends
“password"

. if(equals(id, sp_id)){
if(equals(p, sp_p)X

" hrovides the service

27,)
2}

program conversion module}

program after conversion|

3. lp= rece‘lve();
en_password = receive();
5. org_p: = decrypt(en_p)

the user sends
“en-password”

. if(equals(id, sp_id)){
Ilif(equals(p, sp_p){
if(equals(org_password, sp_p){

" ﬁrovides the service

not defined. Therefore, we have to find a variable stor-
ing ”sp_password”. When we look at <OPERATION> of
the protection policy, we notice “sp_password” is used in
“authentication(password, sp_password).” Since “authentica-
tion(password, sp_password)” is same with “equals(p, sp_p),”
we can associates “sp_password” with “sp_p.” In the same
fashion, finally, a program modification program associates all
data appeared in the protection policy with variables in the
program.

B. Lexical and Syntactic Analysis

In this step, the program is analyzed for the preparation
of program conversion. We use ASTParser[10] to analyze a
program. ASTParser creates a abstract syntax tree to express
the structure of a program. The example of the structured
program 1is illustrated in Figure 7.

As shown in Figure 7, the program is separated in each line;
each line is decomposed into some parts. For example, the thrid
line of the program which handles ”’p” is decomposed into ”p”
(SIMPLE_NAME) and ’receive” (CLASS_INSTANCE_CRE-
ATION). We can find a variable and a method from this tree
by calling method prepared for each. For example, if we want
to find a variable ”p” from the program, we can find where
”p” appears in by calling ”SimpleName.getldentifier()” which
returns the value of SIMPLE_NAME. Thus, we can know,
where each variables are appeared in, where each operations
are used in, when our personal information is substituted in a

variable, and understand the flow of each variables.

C. Applies Program Conversion Rules

The program conversion module converts a program ac-
cording to <DATA-CONVERT-RULE>, <OPERATION-CON—
VERT-RULE> and <COMMUNICATION-RULE>.

At first, the program conversion module tries to convert
the operation “equals(p, sp_p)” written in the use policy.
<OPERATION-CONVERT-RULE> in the protection policy
is “authentication(org_password, sp_password) <- authenti-
cation(password, sp_password).” Since “password” is stored
in a variable ”p”, sp_password” in “sp_p”, we can knows
“authentication(password, sp_password)” is “equals(p, sp_p).”
Therefore, the program conversion module finds “equals(p,
sp_p)” from the program; replaces it to “equals(org_password,

sp_p).”

Here, “org_password” is not appeared in the pro-
gram, therefore, it tries to create “org_password.” We
can know “org_password” is created by “org_password
<— decrypt(en_password)” from <DATA-CONVERT-RULE>.
Therefore, the program conversion module inserts codes to
create “org_password” before “equals(org_password, sp_p).”
Also, ”en_password” is not appeared in the program. How-
ever, we can know “en_password” is received from a user
because the <COMMUNICATION-RULE> of “en_password”
is allowed. Therefore, the program conversion module in-
serts codes to receive “en_password.” Furthermore, since the
<COMMUNICATION-RULE> of “password” is denied, codes
to receive “password” is removed. In similar manner, the user
stops to send “password”; creates “en_password”; and sends
“en_password” to the service provider.

As the result, the program conversion module can create
the program handling personal information as an encrypted
data. After that, the program conversion module writes the
resulted program into Java formatted file. The service provider
compiles the converted program, and processes user’s personal
information through the converted program. Thus, the user can
be relieved from providing his/her personal information to the
service provider.

VII. CONCLUSION

In this paper, we discussed a way to install a method
selected by a user into a program a service provider has
for realizing the framework that enable to prevent service
providers from abusing our pesonal information. To realize
our framework, we define a protection policy that defines
the installation way for information protection, and a use
policy that defines how personal information is handled in the
program of a service provider. A program conversion modules
converts the program of a service provider according to the
protection and the use policy. We used techniques of lexical
analysis and syntactic analysis for the program conversion.
Since our framework compels the service provider to use
through the converted program, the user would not worry about
providing his/her personal information to a service provider.

The future works will include the evaluation of our frame-
work and the extention of the program conversion module to
cover more complicated programs.

ACKNOWLEDGMENT

This research has been supported by a Grant-in-Aid for
Young Scientists (B), 23700098.

1604

[10]

REFERENCES

NPO Japan Network Security Association,Information Security Incident
Survey Report 2012, http:/www.jnsa.org/result/incident/2012.html

Council of Anti-Phishing Japan, A Monthly Report,
http://www.antiphishing.jp/report/monthly/

D.R. Stinson, editor., Cryptography: Theory and Practice, Crc Pr I Llc,
1995.

P3P project, http://www.w3.org/P3P

The EPAL 1.1, http://www.zurich.ibm.com/security/enterpriseprivacy/epal/
G. Theodorakopoulos, J. Baras, Trust Evaluation in Ad-Hoc Networks,
WiSe04, pp. 1-10, 2004.

D. Xiu, Z. Liu, A Dynamic Trust Model for Pervasive Computing
Environments, FTDCS 2004, pp. 80-85, 2004.

M. Imada, K. Takasugi, M. Ohta, K. Koyanagi, LooM: A Loosely
Managed Privacy Protection Method for Ubiquitous Networking Envi-
ronments, IEICE Trans. on Comm., Vol.J88-B, No.3, pp. 563-573, 2005.
T. Miyamoto, T. Takeuchi, T. Okuda, K. Harumoto, Y. Ariyoshi, S.
Shimojo A Proposal for Profile Control Mechanism Considering Privacy
and Quality of Personalization Services, DEWS 2005, 6A-o1, 2005.
Exploring Eclipse’s ASTPaerser,

http://www.ibm.com/developerworks/opensource/library/os-ast/

