
Debugging Mobile Agent Systems

Masayuki Higashino
Department of Information and

Electronics
Graduate School of

Engineering, Tottori University
Tottori 680-8552, Japan
s032047@ike.tottori-

u.ac.jp

Shin Osaki
Department of Information and

Electronics
Graduate School of

Engineering, Tottori University
Tottori 680-8552, Japan
s092018@ike.tottori-

u.ac.jp

Shinya Otagaki
Department of Information and

Electronics
Graduate School of

Engineering, Tottori University
Tottori 680-8552, Japan
s082009@ike.tottori-

u.ac.jp
Kenichi Takahashi

Department of Information and
Electronics

Graduate School of
Engineering, Tottori University

Tottori 680-8552, Japan
takahashi@ike.tottori-

u.ac.jp

Takao Kawamura
Department of Information and

Electronics
Graduate School of

Engineering, Tottori University
Tottori 680-8552, Japan

kawamura@ike.tottori-
u.ac.jp

Kazunori Sugahara
Department of Information and

Electronics
Graduate School of

Engineering, Tottori University
Tottori 680-8552, Japan

sugahara@ike.tottori-
u.ac.jp

ABSTRACT
A mobile agent is an autonomous software module that can
migrate between different computers. A mobile agent is de-
signed and implemented like a human, and mobile agents
work together by interactions among them like a human
community. Thus, a mobile agent technology is helpful when
we develop distributed systems with an easy-to-understand
design and implementations for humans. Many researchers
have proposed various applications through mobile agent
technologies. However, mobile agent technologies are not
used much as compared to other networking or program-
ming technologies in the real world because migrations of
mobile agents make it difficult to debug the system. This
paper discusses problems of mobile agents for debugging,
and proposes a remote debugger in order to solve these prob-
lems. Our proposed remote debugger supports functions of
searching, single stepping execution, breaking, and viewing
variables for a mobile agent who behaves with migrations on
a running system.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems—mobile agent systems; D.2.5 [Testing and De-
bugging]: Distributed debugging

General Terms
Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS 2-4 December, 2013, Vienna, Austria
Copyright 2013 ACM 978-1-4503-2113-6/13/12 ...$15.00.

Keywords
mobile agent systems, debugging, platforms

1. INTRODUCTION
A mobile agent is an autonomous software module that

can work on different computers and migrate between these
computers. These computers install an agent runtime en-
vironment (ARE) which is connected by a network, and
a mobile agent can work on these AREs. A mobile agent
is designed and implemented like a human, and these mo-
bile agents work together by interactions among them like
a human community. Thus, mobile agent technologies are
helpful when we develop distributed systems with easy-to-
understand design and implementations for humans.

Many researchers have proposed various design, imple-
mentations, applications, and platforms of mobile agent sys-
tems [10, 19]. However, mobile agent technologies are not
used much as compared to other networking or program-
ming technologies in the real world because migrations of
mobile agents make it difficult to debug the system. Since
many mobile agents work concurrently and migrate to many
computers in a mobile agent system, when a problem occurs
in a mobile agent, a programmer must find this mobile agent
with difficulty from many mobile agents and many AREs.
Since a mobile agent migrates from a computer to another
computer, in order to debug this mobile agent, it requires
connections to these computers and functions of remotely
debugging. Since a mobile agent migrates even when a pro-
grammer is debugging this mobile agent, the remote debug-
ger must change a destination of a connection to a computer
which the agent migrates to. Additionally, since behavior of
mobile agent is affected from interactions with other mobile
agents, even if a mobile agent executes a same program of
a task, then a result of it is not always same. Therefore,
when a programmer reproduces a bug in order to debug it,
the environments of not only mobile agents but also AREs
must be reproduced.

A debugger for ordinary software other than a mobile

agent system does not support functions for characteristics
described above of a mobile agent system, and it is hard to
debug mobile agent systems. Therefore, this paper discusses
problems on debugging of mobile agent systems, and pro-
poses a remote debugger for mobile agent systems in order
to solve these problems. Proposed remote debugger supports
functions of searching, single stepping execution, breaking,
and viewing variables for a mobile agent who behaves with
migrations on a running system.

The rest of this paper is organized as follows. Section 2
points out related works. Section 3 discusses problems and
approaches in debugging of mobile agent systems. Section
4 describes design and a implementation of our approaches.
Section 5 shows the evaluations and their results. Finally,
Section 6 draws the conclusions.

2. RELATED WORKS
In the research area of multi-agent systems, there have

been proposed several technologies for developers. IOM/T
[23], Q [24], and SDLMAS [25] is a description language
to define interactions and scenarios among agents for multi-
agent systems. However, the definitions supported by these
languages are based on only remote messaging among agents
who basically stay on a computer and do not basically mi-
grate. Thus, it is difficult to apply interactions proposed
on the area of multi-agent systems to interactions including
mobility.

Also, in the research area of mobile agent systems, there
have been proposed approaches like mentioned above. Mo-
bile Object-Z (MobiOZ) [21, 22] can specify mobile agent
applications with a specification notation extended the Z for-
mal specification notation [11] and verify the model of the
applications by the SPIN (Simple Process meta language
INterpreter) model checker [3]. LAM (Logical Agent Mo-
bility) [27, 7] also can verify models of applications by the
SPIN. π-ADL [17] is an architecture description language
based on the higher-order typed π-calculus, which is one of
a model for a process calculus, for specifying dynamic and
mobile software architectures, and models described by π-
ADL can be verified by CADP (Construction and Analysis
of Distributed Processes) toolbox [9], and it can be applied
to mobile agent systems.

If definitions with these languages (notations) are valid
logically, generating native source codes as implementations
from these definitions, bugs by implementing do not occur.
However, in order to apply these definitions to existing ap-
plications, developers must design and implement additional
definitions and generators for applications. Therefore, these
approaches make the applications robust, but choosing these
approaches becomes difficult in practice, because the costs
increase with increasing a scale and complexity of the ap-
plications. Additionally, there are applications that cannot
be applied to approaches mentioned above. Therefore, a
debugger for mobile agents is required.

Several researchers have proposed a tool to visualize and
debug interactions among agents [16, 13, 20, 26, 5], but
these tools do not focus on mobility of agents. JADE [2]
and Agent Factrory [6, 4] is a platform for multi-agent sys-
tems that includes debuggers. These platforms support mo-
bility of agents, but their debuggers do not support and
focus on mobility of agents, because these platforms mainly
focus on multi-agent systems and subsequently introduced
mobility. Also [15] suggested requirements for IDEs (Inte-

grated Development Environments) to support construction
of multi-agent systems, but they touched only on mobility
just a little. MiLog [8] is a framework (platform) including
an IDE for mobile agent systems that can visualize loca-
tions of agents in a network and dump logs of each agent.
However, because its features are simple, in massive mobile
agent systems, debugging processes with these features is
laborious.

Therefore, this paper discusses problems of mobile agents
for debugging, and proposes an effective remote debugger in
order to solve these problems.

3. PROBLEMS AND APPROACHES ON DE-
BUGGING MOBILE AGENT SYSTEMS

Mobile agent systems have characteristics that multiple
mobile agents interact with other agents, work on multiple
nodes, and migrate to these nodes. However, these charac-
teristics make it difficult to debug the system for the follow-
ing reasons:

1. Multiple targets to debug A debugger for general soft-
ware targets one application (called a process in OS).
However, in a mobile agent system, many multiple
mobile agents work concurrently and migrate concur-
rently to many nodes. Thus, at first, a debugger for
mobile agent systems must search targets from a net-
work with search queries including various condition
of mobile agents.

2. Working on remote nodes: In mobile agent systems, a
mobile agent works on distant nodes. Thus, in order to
check behavior of an agent, a debugger must connect
to a node on which this agent is working. A remote
debugger is required in order to debug mobile agents.

3. Migrating on debugging: A mobile agent migrates a-
mong nodes even when a programmer is debugging
them. However, a debugger for general software or
multi-agent systems does not consider frequent chang-
ing a destination according as migrations of agents.
Thus, in order to debug this mobile agent, the remote
debugger must change a destination of a connection
to a node to which this agent migrates. Addition-
ally, the debugger must continuously support features
for debugging such as single-stepping, breaking, and
tracking the values of variables, even when the agent
migrates.

4. Side effects by interactions other agents and nodes:
Behavior of a mobile agent is affected from interac-
tions with other mobile agents and AREs. Even if a
mobile agent executes a same program of a task, then
a result of it is not always same by these side effects.
Therefore, when a programmer reproduces a bug in
order to debug it, the environments of not only mobile
agents but also AREs must be reproduced.

4. DESIGN AND IMPLEMENTATION
This paper considers a design of a debugger for mobile

agent systems on the basis of approaches described above.

4.1 Searching Function

4.1.1 Parameters of Search Query
A programmer cannot grasp all mobile agents in the sys-

tem; because there are multiple targets to debug in mobile
agent systems and the number of mobile agents and nodes
is large. Therefore, a searching function is required which
finds agents from a network of mobile agent systems by var-
ious parameters. In order to search mobile agents, a name,
a state, and a location of a mobile agent is a useful infor-
mation. A name gives a classification to mobile agents such
as a class name of instances, a role, etc. A state represents
a runtime state of a mobile agents like a state of a thread
in Java, such as running, waiting, and terminated. A lo-
cation is an identifier of node on which a mobile agent is
working currently. By using these parameters as a query for
searching, a programmer can filter mobile agents which have
suspicious behavior from many mobile agents in a system.

4.1.2 Identifiers for Mobile Agents
Because some platforms (frameworks) of mobile agents

have no identifiers to give uniqueness for mobile agents, a
debugger for mobile agent systems must give a new iden-
tifier to searched mobile agents. Thus, a debugger gives
UUID (Universally Unique Identifier) [14] to mobile agents
as unique identifiers. Also, these identifiers are also used by
other functions described below.

4.1.3 Method to Search
Since mobile agents are used on various network topologies

such as a P2P (peer-to-peer) and a client-server, a suitable
method to search depends on a network topology used by
an application. Thus, our approach does not limit the kind
of method to search mobile agents. In our implementation,
we use a query flooding simply because this paper does not
focus on a performance of searching.

4.2 Monitoring Function
Because it is not always find mobile agents which have

suspicious behavior when searching, the notifications when
mobile agents cause problems are required. Therefore, if a
parameter of search query matches a mobile agent when the
mobile agent causes problems, the node on which this agent
stay sends a notification to a node of developers.

4.3 Debugging Function

4.3.1 Breaking of Mobile Agent
In order to debug a mobile agent, a programmer finds

a mobile agent of a target by using searching or monitor-
ing function and sets the mobile agent to a debug mode.
Because there is a case that multiple instances of mobile
agents are generated from one class or cloned, it is possible
that multiple mobile agents which are generated from same
erroneous source codes cause problems. Thus, breakpoints
must be specified in source codes, and these mobile agents
must have source codes on runtime.

4.3.2 Single-Stepping of Mobile Agent
Basically, a function of single-stepping can be realized by

applying breaking but there are problems when a migra-
tion occurs between steps. Generally, nodes are connected
by different sessions of TCP (transmission control protocol).
Since TCP maintains order of packets in a session but TCP
does not maintain order between different sessions, a remote

debugger must maintain order by other method. Thus, a
mobile agent in a debug mode has a counter of the number
of migrations. When the mobile agent migrates, this agent
sends a notification of a migration with the counter. Addi-
tionally, mobile agent migrates with an own runtime state
such as a function call stack, a program counter, and infor-
mation of breakpoint. Thus, a programmer can continuously
execute single-stepping of a mobile agent with migrations.

4.4 Logging Function
In order to reproduces a bug, the environments of not only

mobile agents but also AREs must be reproduced. Thus,
in order to support reproducing, each node stores logs of
interactions between mobile agents and nodes.

5. EXPERIMENT
In order to evaluate our debugger for mobile agent system,

we have experimented to debug a test application which in-
cludes a bug.

Our debugger is implemented to the mobile agent frame-
work called Maglog (Mobile AGent system based on pro-
LOG) [12]. The agent of Maglog is implemented by ex-
tending PrologCafé [1]. PrologCafé is a 100% pure Java
implementation of the Prolog programing language, which
contains a Prolog-to-Java source-to-source translator and a
Prolog interpreter.

Therefore, Java programmers are able to completely ac-
cess to a Prolog interpreter’s internal execution states such
as choice point stack, trail stack, a set of variable bind-
ings, and etc. When an agent migration, agent execution
state, application data, program codes, and identifiers are
converted to byte array by Java Object Serialization [18],
and transferred among AREs through HTTP/1.1 protocol.
Thus, the information of breakpoint is realized as an in-
stance of a prolog interpreter.

In this application, there is an agent that migrates to
nodes at random. The application is implemented by a third
party, and a programmer has tried to debug the application
without knowing the bug.

In the experiment, the agent has stopped with an excep-
tion on somewhere in a network. The programmer has found
the location of the agent by using search function and tried
to clear cause of this by using single-stepping function. As a
result, the programmer could find out cause that the agent
mistakes the increment for the decrement of a list contains
random destination locations.

6. CONCLUSION
This paper has discussed problems of mobile agents for de-

bugging, and proposed a remote debugger in order to solve
these problems. Our proposed remote debugger supports
functions of searching, single stepping execution, breaking,
and viewing variables for a mobile agent who behaves with
migrations on a running system. The experiment shows
that our debugger for mobile agent systems finds effectively
bugs.

7. REFERENCES
[1] M. Banbara, N. Tamura, and K. Inoue. Prolog cafe: A

prolog to java translator system. In Proceedings of the
16th International Conference on Applications of

Declarative Programming and Knowledge
Management, pages 1–11, 2005.

[2] F. Bellifemine, G. Caire, T. Trucco, and G. Rimassa.
JADE PROGRAMMER’S GUIDE. Telecom Italia
S.p.A., 2010.

[3] M. Ben-Ari. Principles of the Spin Model Checker.
Springer London, 2008.

[4] F. M. T. Brazier, B. J. Overeinder, M. van Steen, and
N. J. E. Wijngaards. Agent factory: Generative
migration of mobile agents in heterogeneous
environments. In Proceedings of the 2002 ACM
Symposium on Applied Computing, SAC ’02, pages
101–106, New York, NY, USA, 2002. ACM.

[5] L. Cabac, T. Dörges, M. Duvigneau, and D. Moldt.
Requirements and tools for the debugging of
multi-agent systems. In Proceedings of the 7th German
Conference on Multiagent System Technologies,
MATES ’09, pages 238–247, Berlin, Heidelberg, 2009.
Springer-Verlag.

[6] R. Collier. Debugging agents in Agent Factory. In
Proceedings of the 4th International Conference on
Programming Multi-Agent Systems, ProMAS ’06,
pages 229–248, Berlin, Heidelberg, 2007.
Springer-Verlag.

[7] J. Ding, D. Xu, X. He, and Y. Deng. Modeling and
analyzing a mobile agent-based clinical information
system. The International Journal of Intelligent
Control and Systems, 10(2):143–151, 2005.

[8] N. Fukuta, T. Ito, and T. Shintani. Milog: A mobile
agent framework for implementing intelligent
information agents with logic programming. In Pacific
Rim International Workshop on Intelligent
Information Agents, 2000.

[9] H. Garavel, F. Lang, R. Mateescu, and W. Serwe.
CADP 2010: a toolbox for the construction and
analysis of distributed processes. In Proceedings of the
17th International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems: Part of the Joint European Conferences on
Theory and Practice of Software, TACAS ’11/ETAPS
’11, pages 372–387, Berlin, Heidelberg, 2011.
Springer-Verlag.

[10] A. R. Hurson, E. Jean, M. Ongtang, X. Gao, Y. Jiao,
and T. E. Potok. Recent advances in mobile
agent-oriented applications. In A. Y. Zomaya, editor,
Mobile Intelligence: Mobile Computing and
Computational Intelligence, Wiley Series on Parallel
and Distributed Computing. John Wiley & Sons, Inc.,
1st edition, 2010.

[11] ISO/IEC. Information technology ― Z formal
specification notation ―Syntax, type system and
semantics, 1 edition, 2002. ISO/IEC 13568:2002(E).

[12] T. Kawamura, S. Motomura, and K. Sugahara.
Implementation of a logic-based multi agent
framework on java environment. In Proceedings of
IEEE International Conference on Integration of
Knowledge Intensive Multi-Agent Systems, pages
486–491, 2005.

[13] D. N. Lam and K. S. Barber. Debugging agent
behavior in an implemented agent system. In
Proceedings of the 2nd International Conference on
Programming Multi-Agent Systems, ProMAS ’04,

pages 104–125, Berlin, Heidelberg, 2005.
Springer-Verlag.

[14] P. Leach, M. Mealling, and R. Salz. A Universally
Unique IDentifier (UUID) URN Namespace. Request
for Comments (RFC) 4122, 2005.

[15] S. Lynch and K. Rajendran. Breaking into industry:
Tool support for multiagent systems. In Proceedings of
the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’07, pages
136:1–136:3, New York, NY, USA, 2007. ACM.

[16] D. T. Ndumu, H. S. Nwana, L. C. Lee, and J. C.
Collis. Visualising and debugging distributed
multi-agent systems. In Proceedings of the 3rd Annual
Conference on Autonomous Agents, AGENTS ’99,
pages 326–333, New York, NY, USA, 1999. ACM.

[17] F. Oquendo. π-ADL: an architecture description
language based on the higher-order typed π-calculus
for specifying dynamic and mobile software
architectures. ACM Software Engineering Notes
(SEN), 29(3):1–14, 2004.

[18] Oracle Corporation. Object Serialization. Web, 2013.
http://docs.oracle.com/javase/6/docs/

technotes/guides/serialization/.

[19] A. Outtagarts. Mobile agent-based applications: a
survey. International Journal of Computer Science
and Network Security (IJCSNS), 9(11):331–339, 2009.

[20] L. Padgham, M. Winikoff, and D. Poutakidis. Adding
debugging support to the prometheus methodology.
Engineering Applications of Artificial Intelligence,
18(2):173–190, 2005.

[21] K. Taguchi and J. Song Dong. An overview of Mobile
Object-Z. In Proceedings of the 4th International
Conference on Formal Engineering Methods: Formal
Methods and Software Engineering (ICFEM 2002),
pages 144–155, 2002.

[22] K. Taguchi and J. Song Dong. Formally specifying and
verifying mobile agents ― model checking mobility:
the MobiOZ approach. International Journal of
Agent-Oriented Software Engineering, 2(4):449–474,
2008.

[23] D. Takuo, T. Yasuyuki, and H. Shinichi. IOM/T: An
interaction description language for multi-agent
systems. In Proceedings of the 4th International Joint
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2005), pages 778–785, 2005.

[24] I. Toru. Q: A scenario description language for
interactive agents. IEEE Computer, 35(11):42–47,
2002.

[25] I. Čavrak, A. Stranjak, and M. Žagar. SDLMAS: A
scenario modeling framework for multi-agent systems.
Journal of Universal Computer Science,
15(4):898–925, 2009.

[26] G. Vigueras and J. A. Botia. Tracking causality by
visualization of multi-agent interactions using
causality graphs. In Proceedings of the 5th
International Conference on Programming
Multi-Agent Systems, ProMAS ’07, pages 190–204,
Berlin, Heidelberg, 2008. Springer-Verlag.

[27] D. Xu, J. Yin, Y. Deng, and J. Ding. A formal
architectural model for Logical Agent Mobility. IEEE
Transactions on Software Engineering, 29(1):31–45,
2003.

