
653 
 

EECS 425 
 

Effective Mobile Agent Migration Mechanism 
on Load Distribution System 

 
Masayuki Higashin 
Tottori University 

 
Kenichi Takahashi 
Tottori University 

 
Takao Kawamura 
Tottori University 

 
Kazunori Sugahara 
Tottori University 

 
Abstract 
A mobile agent system is a distributed system that is constructed from software 
modules   called   “mobile   agent”   which   are   able   to   work   autonomously   and  migrate  
between machines. A mobile agent is able to continue working on migrations thus 
which carry program codes. However, as the scale of software becomes larger, so the 
number and the size of program codes becomes greater, and thus the mobile agent 
system’  s  performance  decreases  because  a  mobile  agent  has  to  carry  program codes 
on the migrations. In this paper, we propose a mobile agent migration mechanism 
based on program code caching and evaluate its validity. 
Keyword: mobile agent, platform, cache. 
 

1. Introduction 
Nowadays, a wide variety of services with large-scale computer networks have been 
being provided thanks to global diffusion of the Internet. In order to realize these 
services, a method which any components existing in networks work together as one 
system is proposed, but it requires complexly programing techniques. Thus, a mobile 
agent has been being proposed as a technique that developers can design distributed 
systems by using an easy-to-understand model [1, 2]. We have been proposing a 
meeting scheduling system and a P2P e-Learning system based on a mobile agent, and 
showing effectiveness of these systems [3, 4]. 
 
However, in such systems based on mobile agent techniques, because a migration of a 
mobile agent has to transfer not only application data but also program codes and its 
runtime states, a migration of an agent increases network traffic than a socket 



654 
 

communication or a RPC (Remote Procedure Call), and the performances of the 
systems are decreased [5]. 
 
Due to this, various researches that aimed to improve the performance of a mobile 
agent system have been conducted [6, 7, 8, 9, 10]. However, because many of these 
studies are dependent on an algorithm of interactions of agents, it complicates 
behavior of agents and development of systems. As a result, an advantage of a mobile 
agent that can design distributed systems by using an easy-to-understand model is lost. 
Additionally, because these algorithms are optimized for a specific system, it is 
limited a range of applications. 
 
In this paper, we propose that reduces time required to migrate of agents by improving 
a mechanism of agent migrations. Our proposed method caches program codes into 
source and destination machines when agents migrate. When agents of same type 
migrate concurrently, or when agents of different type which have same program 
codes migrate concurrently, AREs prevent unnecessary transfer of program codes by 
using caches of these agents. When agents of same type migrate, or when agents of 
different type which have same program codes migrate, AREs prevent unnecessary 
transfer of program codes by using caches which are stored when these agents 
migrated in past times. Additionally, when these agents migrate concurrently, AREs 
cancel duplicative transfer of same program codes. Therefore, even where many 
agents migrate concurrently at the same time, the performance degradation of the 
cache is prevented. 
 
The rest of the paper is organized as follows. Section 2 defines an internal data 
structure of a mobile agent and classifies this data structure into cacheable data or 
un-cacheable data. Section 3 proposes our agent migration protocol by using cache 
mechanisms. Section 4 evaluates this proposed method. Section 5 describes difference 
between our method and existing methods. Finally, section 6 concludes the paper. 
 

2. Cache Structure 
 
2.1 Data Structure of Mobile Agent 
This paper proposes a method that reduces time required to migrate of agents by 
caching. First of all, we define an internal data structure of a mobile agent. Figure 1 
shows architecture of a mobile agent system. In AREs (an agent runtime 
environments), multiple agents work concurrently and are able to migrate between 
AREs via networks. An agent is constructed from a runtime state area and an 
application area, and a program code area that contains program codes [11]. A runtime 



655 
 

state area has information of states of the agent during executions of tasks such as call 
stacks, program counters, etc. An application area has any data that is specified by 
developers of the agent. A program code area has a set of program codes that is 
described behaviors of the agent. This constructions cover specifications of MASIF 
Specification by OMG [12] and Agent Management Specification by FIPA [13, 14]. 

 
Figure 1. The structure of a mobile agent system. 

 
2.2 Cacheable data in Mobile Agent 
The mobile agent consists of a runtime state area, an application area, and a program 
codes area. These areas are classified into cacheable and un-cacheable data. Cacheable 
data must be static because data continuously changed is difficult to be reused. A 
runtime state area is un-cacheable because it changes continuously according to a 
behavior of a mobile agent. We cannot say application area is cacheable or 
un-cacheable because it depends on the implementation. It is cacheable if data rarely 
change, un-cacheable if data change continuously. A program code area is cacheable 
because program codes usually do not change. We aim at a general cache mechanism, 
and therefore we focus on only the program codes for cache. 
 
2.3 Identification of Program Codes 
In a general system development, in order to improve software reusability, program 
codes are divided into modules. Similarly in a mobile agent system development, large 
agents are divided functionally into small agents, and these some agents use common 
program codes. For example, when developers design agents, they reuse libraries for 
some agents. There are also code clones are generated by copy and paste. If these 
program codes can be shared between agents, the performance of cache can increase. 
 
However, when agents use different versions of program codes, or when agents that are 
developed by different venders work together, there could be agents that use program 
codes that have a same name but a different behavior. In this case, a program code 
cannot be identified by the name because the cache coherence is lost. Therefore, the 
cache store identifies program codes by contents of those program codes. For example, 



656 
 

in the case of JVM (Java Virtual Machine), in order to identify program codes, the 
cache store uses a hash value generated from Java byte codes as a identifier of program 
code. Thus, our proposed method realizes the cache coherence and can reuse program 
codes between different agents. 
 

3 Agent Migration Mechanism 
 
3.1 Agent Migration Session 
In this paper, we define a set of procedure from start to finish of an agent migration as a 
migration session. A runtime state area and an application area have to be transferred at 
every migration session because these areas are not cacheable data. However, program 
codes stored in a program code area has a possibility of that are cached in a destination 
ARE. 
 
Therefore, in a migration session, the source ARE transfers firstly a runtime state area 
and an application area, and the identifiers of program codes to the destination ARE. 
Next, the destination ARE receives and saves the runtime state area and the application 
area, and identifiers of program codes; and the destination ARE checks whether the 
program codes have cached by using identifiers of program codes. Finally, the 
destination ARE restores an agent from a runtime state area and an application area, 
program codes; and the destination ARE finishes the migration session. Thus, the cache 
mechanism reduces the wasteful transfer of program codes. 
 
3.2 Temporally-overlapped Migration Sessions 
The program code area consists of multiple program codes. Additionally, in a 
large-scale system, the number of agents will increase, and a great number of agents 
work concurrently in the system. Thus, if multiple program codes are transferred after 
checking that they do not exists in the destination ARE, checking multiply program 
codes all at once is more efficient than checking singly. However, if a great number of 
agents migrate concurrently to one destination ARE, such as a meeting pattern [15], 
requests for transfer of program codes are send multiply to source AREs of each 
migrating agents. Requests for transfer of program codes are send multiply to the 
source AREs of each migrating agents. As a result, same program codes are 
transferred multiply, and a significant performance degradation of cache mechanism 
occurs. 
 
3.3 Cancellations of Transfers of Program Codes 
In order to prevent duplicated transfers of program codes, our proposed method 
employ a mechanism that can cancel duplicated sent requests of transfer of program 



657 
 

codes. The step of our method is as follows: 
 

1. The source ARE sends a runtime state area and an application area, and 
identifiers of program codes. 

2. The destination ARE checks that whether program codes have cached by using 
received identifiers of program codes and sends a list of identifiers of un-cached 
program codes. 

3. The source ARE sends program codes requested by the destination ARE. 
4. The destination ARE stores the received program codes into caches and sends 

cancellation messages to the source AREs that are requested program codes but 
does not send the program codes yet. 

5. The source AREs that are received the cancellation message cancel transfer of 
canceled program codes. 

 
Thus, transferring duplicated program codes from multiple source AREs to a 
destination ARE can be prevented. 
 

4 Experiments 
 
4.1 Experimental Environments 
We implemented our migration mechanism on Maglog (Mobile AGent system based 
on proLOG) [16], which is our proposed mobile agent framework. Maglog is 
implemented in Java and runs on any platform providing Java Runtime Environment 
(JRE). A mobile agent is a Java Object, which can run concurrently by using threads. 
A program code identifier is generated by a hash function (SHA-1) from a Java 
Bytecode. Agents are converted from Java Instance to binary array by using Java 
Object Serialization Technology, and are able to migrate between AREs via 
WebSocket Protocol. In order to show the effectiveness of our proposed method, we 
implemented three types of mechanisms, which are shown as follows: 
 

 Non-cache: This method does not cache program codes. The program codes are 
transferred at every migration. 

 Cache: This method caches program codes and does not execute cancellations. 
 Cache-cancel: This method caches program codes and executes cancellations. 

 
A configuration of the computer used in the experiments is as follows: Intel Core 
i7-2600 Processor (8 MiB Cache, 3.40 GHz), 32 GiB RAM, 1000 BASE-T NIC, and 
Debian GNU/Linux 6.0.0 (Kernel 2.6.32-5-686-bigmem). The NIC is assigned by 
multiple IP addresses with IP Aliasing. The bandwidths of each communication path 



658 
 

between these IP addresses are configured with DummyNet [17]. The ARE of Maglog 
runs on a Java Platform Standard Edition 6 Development Kit. 
 
4.2 Evaluation on Load Distribution System 
In order to evaluate effectiveness of our proposed method, we conducted an experiment 
on a load distribution system, which is developed with a mobile agent framework. In 
this system, agents are distributed equally to each node in order to balance a load of the 
system. The agents are given different initial parameters, and solve a problem with a 
same algorithm. When a new node is added to this system, the agents are re-distributed 
equally in order to balance a load including the new node. At that time, multiple agents 
having tasks migrate concurrently to the new node at the same time. In this experiment, 
we measured processing time of scale-out procedures about non-cache, cache, and 
cache-cancel. We set the bandwidth of communication path to 100 Mbps and increased 
the number of nodes from 1 to 16. 
 
Figure 2 shows experimental results. When the number of nodes is increased from 15 to 
16, cache improves the performance by 8% than non-cache, and cache-cancel 
improves the performance by 58% than non-cache. Cache-cancel improves the 
performance of cache as the number of nodes increases; and if additionally increasing 
the number of nodes, the difference in performance between non-cache and cache will 
be greater. 
 

Figure 2. The time required for processing of a load distribution. 
 

5 Related Works 
Several researchers have proposed a method that improves performance of a mobile 
agent system. [6, 7, 8] have proposed that agents who communicate remotely migrate to 
same node in order to communicate locally. [10] has proposed that agents determine 
whether migrate by size of data communication traffic that is compared interactions 



659 
 

with migrations. 
 
These approaches reduce data communication traffic of a mobile agent system. 
However, the advantage that can design distributed systems by using an 
easy-to-understand model is lost because these depend on behaviors or interactions of 
agents. 
 
MASIF Specification [12] shows a method that sends only program codes, which do 
not exist at a destination ARE. The method checks whether program codes exist at a 
destination ARE by program code names. However, its design and implementation 
does not defined well as a specification. [18] has proposed that different agents can 
share program codes by using hash values generated from program codes as identifiers 
of program codes. However, it is not consider performances, when many agents 
migrate to one destination ARE at the same time. 
 

6 Conclusion 
This paper proposed that an agent migration mechanism to reduce migration time of 
agent. The proposed mechanism reduces transfers of program codes when agents 
migrate by using the cache technique. Additionally, when multiple agents migrate 
from multiple sources to one destination at the same time, the proposed mechanism 
prevents duplicate transfers of program codes by using cancellations of requests of 
transfers of program codes. 
 
We implemented our mechanism on a mobile agent framework, called Maglog, and 
conducted experimental results on a load distribution system. In this experiment at 
scale-out that increases the number of nodes from 1 to 16, our mechanism improved 
the performance of the system by up to 54.4%. 
 

7 References 
[1] Hurson A R, Jean E, Ongtang M, Gao X, Jiao Y, Potok T E. Recent advances in 

mobile agent-oriented applications. Mobile Intelligence: Mobile Computing and 
Computational Intelligence, 2012, pp.106-139. 

[2] Outtagarts A. Mobile agent-based applications: a survey. International Journal of 
Computer Science and Network Security, 2009, 9(11): 331-339. 

[3] Kawamura T, Hamada Y, Sugahara K, Kagemoto K, Motomura S. 
Multi-agent-based approach for meeting scheduling system. Proceedings of IEEE 
International Conference on Integration of Knowledge Intensive Multi-Agent 
Systems, 2007, pp.79-84. 

[4] Motomura S, Nakatani R, Kawamura T, Sugahara K. Distributed e-Learning 



660 
 

System Using P2P Technology. Proceedings of the 2nd International Conference 
on Web Information Systems and Technologies, 2006, pp.250-255. 

[5] Maeda N, Nakajima S. A Quantitative Evaluation Method of Mobile Agent for 
Distributed System Development. IPSJ Journal, Information Processing Society 
of Japan, 2002, 43(7): 2330-2339. 

[6] Noto M, Numazawa M, Kurihara M. Empirical Evaluation of Traffic Performance 
of Inter-Agent Communication Systems with Mobile Agents. IEEJ Transactions 
on Electronics, Information and Systems, The Institute of Electrical Engineers of 
Japan, 2004, 124(3): 904-911. 

[7] Takahashi T, Mizuta H. Efficient agent-based simulation framework for 
multi-node supercomputers. In Proceedings of the 38th conference on Winter 
simulation, 2006, pp.919-925. 

[8] Miyata N, Ishida T. Placing Agents in Massively Multi-Agent Systems. The IEICE 
transactions on information and systems, The Institute of Electronics, Information 
and Communication Engineers, 2007, 90(4) :1023-1030 

[9] Lee Y, Kim K. Optimal migration path searching using path adjustment and 
reassignment for mobile agent. Proceedings of the 4th International Conference 
on Networked Computing and Advanced Information Management, vol.2, 2008, 
pp.564-569. 

[10] Chia T-H, Kannapan S. Strategically mobile agents. Proceedings of the 1st 
International Workshop on Mobile Agents, 1997, pp.149-161. 

[11] Fuggetta A, Picco G P, Vigna G. Understanding code mobility. IEEE Trans. on 
Software Engineering, vol.24, 1998, pp.342–361. 

[12] Object Management Group, Inc.. Mobile agent system interoperability facilities 
specification. 1997. 

[13] Foundation for Intelligent Physical Agents. Fipa agent management specification 
(sc00023k). 2004. 

[14] Foundation for Intelligent Physical Agents. Fipa abstract architecture 
specification (sc00001l). 2002. 

[15] Aridor Y, Lange D B. Agent design patterns: Elements of agent application 
design. Proceedings of the 2nd International Conference on Autonomous Agents, 
1998, pp.108-115. 

[16] Motomura S, Kawamura T, Sugahara K. Logic-based mobile agent framework 
with  a  concept  of  “field”. IPSJ Journal, 2006, 47(4): pp.1230-1238. 

[17] Rizzo L. Dummynet: A simple approach to the evaluation of network protocols. 
ACM SIGCOMM Computer Communication Review, vol.27, 1997, pp.31-41. 

[18] Braun P, Rossak W. Mobile Agents: Basic Concepts, Mobility Models, and the 
Tracy Toolkit. Morgan Kaufmann Publishers Inc., 2005. 


