
Management of Multimedia Data for Streaming on a Distributed e-Learning System

Tadafumi Hayakawa, Masayuki Higashino, Kenichi Takahashi, Takao Kawamura, and Kazunori Sugahara

Graduate School of Engineering, Tottori University
4-101, Koyama-Minami Tottori, Japan

{s042047, s032047, takahashi, kawamura, sugahara}@ike.tottori-u.ac.jp

Abstract—Nowadays, a lot of e-Learning systems are widely
deployed in educational schools. Typical e-Learning systems
are implemented as client-server model. In the client-server
model, the number of clients affects on the load of the server.
In order to reduce the load on the server, we developed a
P2P-based distributed e-Learning system. The proposed system
consists of a lot of mobile agents which manage study contents
and some functions such as scoring, showing questions, and
correct answers. When a learner requests content, a mobile
agent who has its content comes to the learner’s computer,
and then he/she can start the study. Here, a mobile agent has
to manage multimedia data, which may be a huge size of data.
Thus, a mobile agent has to migrates to the learner’s node with
a huge size of data. Then, the learner cannot start the study
until the mobile agent finished to migrate. In order to solve
this problem, we divide multimedia data into fragments and
prepare mobile agents which manages each fragments. Since
each mobile agents become small, a learner can start the study
soon without waiting for the migration of a mobile agent which
has a huge size of multimedia data. We, however, have to search
a mobile agent which manages their fragments. Therefore,
a mobile agent which manages n-th fragments informs its
location to the agent which manages (n + 1)-th fragments,
and vice versa. Since each agent knows the location of a
mobile agent which manages next and previous fragment, a
learner can play multimedia data smoothly without finding the
location of mobile agent which manages holding next fragment.
Experiment results show the effectiveness of our method.

Keywords-e-Learning; Multimedia; P2P; Mobile Agent;

I. INTRODUCTION

The evolution of the internet enables us to study some

contents in anywhere and anytime, which are called as Web-

Based Training system (WBT) and/or e-Learning system.

Thus, learners can use their own time and schedule.

WBT is classified into two types, synchronous and asyn-

chronous type. Synchronous type allows learners to access

and study simultaneously on any time. Asynchronous type

allows each learner to access on own time. In this paper, we

aim at asynchronous type e-Learning system.

Typical e-Learning systems are based on client-server

model. In the client-server model, since all contents and all

functions are centrally managed on a server, the increase

of the number of clients cause the load on. When the

server crashes by some problems such as overloading, whole

system stops, thus learners cannot study anymore.

Therefore, we proposed a distributed e-Learning system

based on P2P model [1], [2]. Our system is implemented

by Maglog [3] that is a Prolog-based agent framework. In

our system, all the contents are managed by mobile agents

(hereafter we refer to mobile agent as agent). Each agent

has not only learning contents but also functions such as

showing contents and answers, explanations, and scoring.

These agents are distributed on learners’ computer (hereafter

we refer to such a computer as node).

In our system, one mobile agent may hold a huge size

of data, such as movies and sounds. The size of the agent

becomes huge, if the agent manages a huge size of multime-

dia data. Then, learners cannot start the study soon because

they have to wait of the agent migration. In P2P network,

popular method of managing multimedia data is dividing

into fragments. Users can play multimedia data by searching

and downloading these fragments. However, if users cannot

download next fragment until the time to play it, multime-

dia data playing is stopped. Thus, to shorten the pausing

time, users download important fragments preferentially by

considering importance automatically [4].

To solve this problem, we divide multimedia data into

fragments and prepares a lot of agent which manages their

fragments. The size of each agent becomes small, learners

do not need to wait the migration of an agent which has

a huge size of multimedia data, thus, the learners can start

the study soon. We, however, have to search a mobile agent

which manages their fragments. Therefore, a mobile agent

which manages n-th fragments informs its location to the

agent which manages (n+ 1)-th fragments, and vice versa.

Since each agent knows the location of a mobile agent

which manages next and previous fragment, a leaner can

play multimedia data smoothly without finding the location

of mobile agent which manages holding next fragment.

II. P2P BASED E-LEARNING SYSTEM

We developed P2P based e-Learning system. In our

system, when a learner tries to study in our system, the

computer of the learners has to be a part of the system as one

node and provide its computing resource. When a computer

joins to the system as a node, some agents migrate from

other nodes to this node. Agents that migrate to this node are

determined by Distributed Hash Table (hereafter we refer to

Distributed Hash Table as DHT). Well-known DHT is Chord

[5] and Content Addressable Network (hereafter we refer

to Content Addressable Network as CAN) [6]. Our system

2012 26th International Conference on Advanced Information Networking and Applications Workshops

978-0-7695-4652-0/12 $26.00 © 2012 IEEE

DOI 10.1109/WAINA.2012.194

1282



equips CAN because of its simplicity. The CAN has a virtual

coordinate space that is used to store (key, value) pairs. To

store a pair (K1, V1), key K1 is deterministically mapped

onto a point P in the coordinate space using a uniform hash

function. The corresponding (key, value) pair is then stored

in the node managing the point P .

Our P2P network is structured with 2-dimensional coordi-

nate space [0,1] × [0,1]. Fig.1 shows the situation when node

D joined the system as the fourth node. Before node D joins,

node A has to manage a half of all domain on DHT, but node

B and C manages only a quarter of all domain. In this case,

based on domain assigned to each nodes, three agents work

on node A; one agent on node B; two agents on node C.

When node D joins, it is mapped on a certain coordinate

space according to a random number. In fig 1, node D is

mapped in the domain node A manages. Therefore, node D

takes on a half of the domain from node A, and takes on

two agents. Thus, the location of each agent dynamically

changes.

Figure 1. Contents management on DHT.

Our system consists of exercise agents (hereafter we refer

to exercise agent as EA) and user agents (hereafter we refer

to user agent as UA).

EAs manage learning contents and has some functions

such as scoring and the explanation of the learning contents.

UAs provide useful user interface to a learner, communicate

with other type of agents and helps learners to study. Every

these agents is mapped on DHT according to their keys

created by hash function. The key of an EA is a hash value

created from learning contents. The key of an UA is a hash

value of learner’s name. When a learner hopes to study some

content, his/her UA sends a content request message to an

EA which manages the content. The EA migrates to the

learner’s node.

Sometimes, learning contents need some graph, some

figure, and some sound or video. However, if EA manage

these multimedia data too, EA’s size becomes huge, and

learner cannot learn until downloading whole EA. Thus,

multimedia data is managed separately as shown Fig. 2.

Media agents (hereafter we refer to media agent as MA)

manage multimedia data. If the content needs to refer

multimedia data, the EA sends a multimedia data request

message to a MA. When the MA receives the message, it

migrates to the learner’s node. Then, the learner can play the

multimedia data. Therefore, even if the size of multimedia

data becomes huge, the EA can provide learning contents in

a constant time but MAs provide multimedia data afterward.

Figure 2. Separation of contents into text data and multimedia data.

III. MULTIMEDIA DATA MANAGEMENT

A learner cannot play multimedia data until the migration

of the MA completes. Therefore, the migration of the MA

to the learner’s node has to finish before the learner needs

to play the multimedia data. As a solution for this problem,

we divide multimedia data into multiple fragments by time

series. Each fragment is managed by each MA as shown in

Fig.3.

Figure 3. Fragmentation of multimedia data.

When a multimedia data is requested, these MAs migrate

to learner’s node one by one. When the first MA has

migrates, the learner can play multimedia data soon without

waiting for the download of whole multimedia data.

Each MA which manages each fragment is mapped on

DHT based on its keys. Since a multimedia content is

composed of some MAs which manages fragments, we hava

to know the location of these MAs on DHT. Therefore, each

MA has the key of a MA which manages next fragment.

Then, each MA can find next MA according to its key.

However, it needs a lot of message to find a node which

manages next MA. Because our system uses 2-dimensional

CAN, O(
√
n) messages are required to find next MA.

Here, n is the total number of nodes. This may impede

smooth playing of the multimedia data. To solve this issue,

before the multimedia content is required from learners, each

MA finds a node which manages next MA and records its

location. Thus, every MA is linked in the order of time

series of the multimedia data. Consequently, we can reduce

messages to find the location of MAs except first MA’s

search.

When a node joins or leaves, a MA may migrate to other

nodes. If a MA migrates, the link between MA becomes

useless anymore. To keep the link, when a node joins or

leaves, each MA records not only the location of next MA

but also previous MA. When a MA migrates, the MA notifies

1283



its new location both to next and previous MA as shown in

Fig. 4. Thus, the link between MAs is kept continuously

even when a node joins or leaves.

Figure 4. Updating location when MA migrates.

IV. EXPERIMENTS

A. Smooth Play of Multimedia Data

We investigate whether multimedia data can play

smoothly or not. In this experiment, we play multimedia

data and compare total time of pausing between when each

MA knows the location of next MA (with link), and does

not know (without link). We use a 16.1 mega bytes video file

which playing time is 21 seconds. We divide this file into

multiple fragments by time series. The size of each fragment

is 200, 225, 250, 275, or 300 kb. We use 100 Mbps LAN.

Fig.5 shows the result of total pausing time.

Figure 5. Total pausing time according to division size.

In without link, when division size is smaller, in other

words, the playing time per one fragment is shorter, the

total pausing time increases. For example, when division

size is 200 kb, the total time of pausing is 25 seconds. This

is because each MA has to find next MA on DHT. In with
link, total pausing time does not depend on division size.

Thus, multimedia data can be played smoothly.

B. The Number of Migration in Each Time Period

We showed how many MAs arrive to a requesting node

in each time period. We use the same video file in IV-A,

and network configuration.

Fig. 6 shows the result of that division size is 200 kb. In

with link , a lot of MA arrives simultaneously, thus, the load

on the node is concentrated. However, in without link, the

migrations of MA are averaged in each time period.

Figure 6. The number of MA migrations to a requesting node.

C. Timing When MA Migrates

If division size is large, multimedia data may not be

smoothly played, because some MAs migrates to a request-

ing node simultaneously. In this experiment, we investigate

duration of MA’s migration to a requesting node, when each

MAs manages 10 mega bytes fragments which is a part of

192.4 mega bytes of video file. Playing time of this video

is 372 seconds. We investigate in four cases.

In first case, a MA sends a requesting message to next

MA immediately. In second case, a MA sends a requesting

message to next MA after the migration to a requesting node

finishes. In third case, a MA sends a requesting message

to next MA after it waits for 5 seconds from a requesting

message from previous MA. In fourth case, a MA sends a

requesting message to next MA after it waits for 10 seconds.

Fig. 7, 8, 9, and 10 show the results of these experiments.

We can see from Fig. 7 that the first case spends a lot of

time for MA’s migration, for example, first MA starts the

migration at time 0 and finish at time 2, the 15th MA starts

the migration at time 14 and finish at time 24.

Figure 7. Duration when MA migrates (First case).

However, in other cases, almost MAs can migrate to a

requesting node in shorter time.

D. JVM’s Heap Size

We investigate the total time of pausing in the first case

and the fourth case when Java Virtual Machine’s heap

1284



Figure 8. Duration when MA migrates (Second case).

Figure 9. Duration when MA migrates (Third case).

memory size changes. Network configuration is the same

as IV-A. Fig. 11 shows the result of this experiment.

In the first case, since a lot of MAs have to migrate

simultaneously, heap memory becomes full soon. Therefore,

a lot of MAs are swapped out, and it obstructs the smooth

play of multimedia data. In the fourth case, this does not

happen. Thus, it is necessary to control the migration of

MAs when a lot of MAs try to migrate simultaneously.

Figure 10. Duration when MA migrates (Fourth case).

Figure 11. Total pausing time.

V. CONCLUSION

In this paper, we proposed and implemented a method to

play multimedia data smoothly. In our system, multimedia

data is divided into multiple fragments by time series,

each media agent manages each fragment, and their media

agents are linked bidirectional. If division size of multimedia

data is huge, multimedia data cannot be played smoothly

because a lot of agents have to migrate to a requesting node

simultaneously. Therefore, we devised the timing of sending

a requesting message to next MA. This method enabled

smooth play of multimedia data.

REFERENCES

[1] T. Kawamura and K. Sugahara, “A Mobile Agent-Based P2P
e-Learning System,” IPSJ Journal, vol. 46, no. 1, pp. 222–225,
1 2005.

[2] S. Motomura, R. Nakatani, T. Kawamura, and K. Sugahara,
“Distributed e-Learning System Using P2P Technology,” Pro-
ceedings of the 2nd International Conference on Web Infor-
mation Systems and Technologies, pp. 250–255, 2006, setubal,
Portugal.

[3] S. Motomura, T. Kawamura, and K. Sugahara, “Logic-Based
Mobile Agent Framework with a Concept of “Field”,” IPSJ
Journal, vol. 47, no. 4, pp. 1230–1238, 4 2006.

[4] S. Sakashita, T. Yoshihisa, T. Hara, and S. Nishio, “A Method
to Reduce Interruption Time in P2P Streaming Environments,”
Journal of Information Processing, vol. 52, pp. 1045–1054, 3
2011.

[5] “Chord,” http://pdos.csail.mit.edu/chord/.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable netwrok,” in Proceedings of
the ACM SIGCOMM 2001 Technical Conference. ACM
SIGOMM, 2001, pp. 161–172.

1285


