
Mobile Agent Migration Based on Code Caching

Masayuki HIGASHINO, Kenichi TAKAHASHI, Takao KAWAMURA, and Kazunori SUGAHARA

Graduate School of Engineering
Tottori University

Tottori, Japan
{s032047, takahashi, kawamura, sugahara}@ike.tottori-u.ac.jp

Abstract—Network-based system requires us to implement
both a client-side and server-side program. The update of
a client-side program involves the update of a server-side
program, and vise versa. To reduce this inconvenience, mobile
agent-based programming is attractive to design, implement
and maintain distributed systems. Because a mobile agent
migrates from one computer to other computer and can
continues its execution, both a client-side and server-side
program is not required to be implemented. The migration
of a mobile agent, however, causes increase of data traffic.
Therefore, many researchers proposed methods to reduce a
number of agents migration. However the effectiveness of these
approaches is limited because they depend on mobile agent
behaviors. Furthermore, they restrict the implementation of
mobile agents. In this paper, we focus on an agent runtime
environment and try to reduce data traffic in mobile agent
migrations. In our proposal, an agent runtime environment
caches agent codes and agent status. Cached codes and status
are reuse when a mobile agent comes back again. Thus, our
method enables to reduce data traffics caused by mobile agent
migration at the agent runtime environment level. Moreover,
our proposed method allows us flexible implementations of mo-
bile agents, since an agent runtime environment is independent
from the mobile agent behaviors. We have applied our method
on a mobile agent framework, called Maglog, and conducted
experimental results. The results show 52% improvement of
mobile agent migration time.

Keywords-cache; mobile agent; agent runtime environment;
data traffic;

I. INTRODUCTION

Nowadays, not only personal computers but also various

appliances such as personal computers, mobile phones,

car navigation systems, televisions and etc., are connected

to the Internet. Further, advances of wireless connection

technologies enable such appliances to connect to the In-

ternet in anywhere and anytime. Thus, ubiquitous network

environment is ready to be in a real. In ubiquitous network

environment, numerous appliances, including users’ mobile

terminals, around our town will work together autonomously

and provide appropriate services to us.

The realization of such an environment requires us com-

plex network programming techniques. Using IPC (Inter-

Process Communication), such as Socket and RPC (Remote

Procedure Call), is most traditional one. Since it usually

becomes a server-client model, we need to implement both

a server-side and a client-side program.

Therefore, many researchers pay attention to mobile agent

programming. A mobile agent can migrate among comput-

ers, exactly, agent runtime environments (ARE). We can use

mobile agent migration instead of communications between

a server-side and a client-side program. This enables us to

develop distributed systems, such as a ubiquitous computing

environment, without being aware of communications APIs

(Application Programming Interface) and protocols. Further,

we are able to put together both tasks, which should be

implemented in a server-side and a client-side program

separately, into one mobile agent. Thus, mobile agent pro-

gramming makes simplify distributed network programming

by using mobile agent migration instead of IPC.

However, the mobile agent migration increases data traf-

fics because it involves the transmission of not only mes-

sages but also execution state, program codes, etc. Thus, the

performance of mobile agent systems becomes sometimes

lower than IPC-based systems. To mitigate such case, some

of researchers try to reduce a number of mobile agent

migrations [1], [2], [3], [4], [5]. These, however, approaches

depend on agent behaviors. Thus, they are not always

adaptive to applications. As the result, the easiness of the

distributed system development, which is a representative

advantage of mobile agent programming, would be spoiled.

In this paper, we propose a cache mechanism to reduce

data traffic when a mobile agent migrates. Our cache mech-

anism works on ARE layer, not on agent layer. Therefore,

developers do not need to care of our cache mechanism;

our mechanism is compatible to all applications. In our

cache mechanism, we assume a mobile agent consist of

execution state, program codes, and application data. The

execution state and application data dynamically changes by

mobile agent behaviors, but program codes are usually static.

Therefore, we focus on program codes and try to cache them.

The rest of this paper is organized as follows. Next,

Section II contains description of a typical mobile agent

system and its internal structure of mobile agent. Our

cache mechanism is applied to the typical mobile agent

system. Section III presents our cache mechanism. Section

IV describes the experimental results of the mechanism on

various mobile agent migration patterns and a mobile-agent-

based meeting scheduling system as a practical application.

Finally, Section V draws the conclusions.

2012 26th International Conference on Advanced Information Networking and Applications Workshops

978-0-7695-4652-0/12 $26.00 © 2012 IEEE

DOI 10.1109/WAINA.2012.127

651

Figure 1. Overview of a mobile agent system.

II. MOBILE AGENT SYSTEM

In mobile agent systems, an ARE is installed in each

machine distributed on a network. Each ARE enables a lot

of mobile agent to work on. A mobile agent migrates among

mobile agent AREs, and accomplishes task in each ARE. For

example, when a mobile agent plans to make the schedule of

a trip, the mobile agent first goes an airline company site and

reserves a ticket; it goes a hotel reservation site and reserves

it. Like this, a mobile agent migrates among machines and

accomplishes a task.

Figure 1 shows the structure of a mobile agent, which is

a typical structure according to [6]. A mobile agent consists

of execution state, application data, and program codes. The

execution state manages variables such as call stack pointers,

program counters and so on. These variables change con-

stantly while a mobile agent is work. The application data

depends on each mobile agent. For example, the application

data may include of user’s preference, and a plan which a

mobile agent made. The program codes define the tasks of

the mobile agent. The mobile agent proceeds with its tasks

by the execution of program codes. In order to continue the

tasks of a mobile agent, an ARE has to transfer execution

state, application data, and program codes to a destination

ARE.

III. CODE CACHE FOR MOBILE AGENT

We propose a cache mechanism for mobile agent migra-

tion. After we discuss which data should be cached in our

cache mechanism, we propose a cache mechanism.

A. Cacheable Data in Mobile Agent

The mobile agent consists of execution stat, application

data, and program codes. These are classified into cacheable
and un-cacheable data. Cacheable data must be static be-

cause data continuously changed is difficult to be reused.

Execution state is un-cacheable because it changes con-

tinuously according to mobile agent’s behavior. We cannot

say application data is cacheable or un-cacheable because it

depends on the implementation. It is cacheable if data rarely

change, un-cacheable if data change continuously. Program

codes are cacheable because it usually does not change.

We aim at a general cache mechanism. Therefore, we

focus on only the program codes for cache.

B. Program Code Cache Mechanism

Cache mechanisms (e.g., cache memory in a computer,

web cache in the Internet) avoid an unnecessary transfer

of data from a remote area to a local area by using data

cached in the local area. On the contrary, cache mechanism

for mobile agent migration avoids an unnecessary transfer of

program codes from a remote area to a local area by using

program codes cached in the remote area. Thus, at the first

connection in mobile agent migration, the local area has to

check which program codes are cached or not in the remote

area.

In our mechanism, at the first connection in a mobile

agent migration, a source ARE sends a set of program code

identifiers to a destination ARE. The destination ARE checks

which program codes are already cached in a local cache

space by program code identifiers. If uncached program are

found, the destination ARE requests to transfer uncached

program codes to the source ARE. The source ARE sends

program codes requested from the destination ARE.

Figure 2 shows a sequence diagram of a mobile agent

migration with the program code cache mechanism. The step

of our mechanism is as follows:

1) The source ARE sends execution state, application

data, and identifiers of the program codes to the des-

tination ARE. Usually the source ARE stops threads

and close files, and etc. of the agent before this step,

but this depends on mobile agent frameworks.

2) The destination ARE checks which program codes are

cached in its local cache space by the identifiers.

3) If the destination ARE finds identifiers of uncached

program codes, goto step 3a.

a) The destination ARE sends the identifiers of un-

cached program codes back to the source ARE.

b) The source ARE requests program codes from

its local cache store.

c) The source ARE gets program codes from its

local cache store.

d) The source ARE sends program codes corre-

sponding to identifiers requested from the des-

tination ARE.

e) The destination ARE stores the program codes

into its local cache space.

After that the destination ARE reconstruct a mobile agent

from program codes cached in its local cache space, execu-

tion state, and application data.

First migration to a destination ARE involves transfer of

program codes because almost program codes are not cached

in the destination ARE. However, after second migration,

since program codes constructing the mobile agent are al-

ready cached in the destination ARE, transfer of the program

codes (step 3a and 3e) are not required.

652

Figure 2. A sequence diagram of an agent migration with program code cache.

C. Program Code Identifier

One mobile agent is usually constructed of many program

codes. Some of these program codes are implemented by

programmers of the mobile agent, but some are downloaded

from the Internet as program libraries for reuse. Then,

programmers may revise a downloaded program, but reuse

it with same name such as a file name, a class name, a

method name, etc. Also, venders of the program libraries

revise program codes but may use the same name. In addi-

tion, different venders may use the same name in different

program codes.

In these cases, program code identifiers made from these

names cause cache poisoning. If cache poisoning occurs, a

mobile agent migrated cannot work well anymore. There-

fore, we have to strictly determine a creation rule of identi-

fiers. The creation rule of identifiers must satisfy following

conditions:

1) Identifiers of same program codes must be same.

2) Identifiers of different program codes must be differ-

ent.

Our system uses a hash value created from program code-

self. Therefore, whatever a program code has been revised,

the hash value of a program code changes. We use SHA-1

[7] as a hash function. SHA-1 takes a program code less

than 264 bits in length and can produce a 160-bit identifier.

The probability of that same hash value is created from

different program codes are extremely small (even a collision

attack have been discovered). When collision occurs, an

error would be detected from a mobile agent constructed

from the collided program code. If collision is detected, the

identifier of the collided two program codes is marked as

pollution. It is regarded as uncached program code even

if a program code marked as pollution is already cached.

Therefore, a program code with pollution mark is always

transferred from a destination to a source ARE. This scheme

cannot completely eliminate the possibility of collisions, but

would be practical approach because the probability collision

occurs is extremely small.

D. Cancellation of Program Code Transfer

A mobile agent is often cloned and their cloned mo-

bile agents work independently. Thus, many similar mobile

agents are working simultaneity on a mobile agent system.

In this situation, when a new ARE joins in the system,

these similar mobile agents may try to the new ARE

simultaneously. For example, some mobile agents may try

to migrate to the new ARE for load balancing. In this case,

same program code are transferred from different AREs to

the new ARE at the same time. However, the new ARE does

not need to get plural same program codes, it is enough

to get only one program code. Therefore, we introduce a

cancellation mechanism of program code transfer.

In the cancellation mechanism, when a destination ARE

sends program code identifiers at step 3a in section III-B, the

destination ARE stores their identifiers marked as requested
with a source ARE list into its local cache space. When

the destination ARE completes to get the program code at

step 3e, the destination ARE sends a cancellation request

message to AREs listed in the source ARE list. The source

ARE received the cancellation request message stops the

program code transfer.

IV. EXPERIMENTAL RESULTS

We implemented our cache mechanism on Maglog (Mo-

bile AGent system based on proLOG) [8], [9], which is our

proposed mobile agent framework. Maglog is implemented

in Java and runs on any platform providing Java Runtime

Environment (JRE). A mobile agent is a java object which is

able to run concurrently by using threads. A program code

identifier is generated by a hash function (SHA-1) from a

Java bytecode.

The agent of Maglog is implemented by extending Prolog-

Café [10]. PrologCafé is a 100% pure Java implementation

of the Prolog programing language, which contains a Prolog-

to-Java source-to-source translator and a Prolog interpreter.

Therefore, Java programmers are able to completely access

to a Prolog interpreter’s internal execution states such as

653

(a) One-way pattern. (b) Shuttle pattern. (c) Round pattern. (d) Star pattern. (e) Random pattern.

Figure 3. Agent migration pattern.

choice point stack, trail stack, a set of variable bindings, and

etc. When an agent migration, agent execution state, appli-

cation data, program codes, and identifiers are converted to

byte array by Java Object Serialization [11], and transferred

among AREs through HTTP/1.1 protocol.

A. Overhead of Cache Mechanism

The performance of a system implemented our mechanism

becomes worse than the system without our mechanism be-

cause our cache mechanism involves the transfer of program

code identifiers and the reference to cache space. Therefore,

we first clear overhead of our mechanism. To clear the

overhead, we use a one-way migration pattern (Figure 3(a))

and measured the mobile agent migration time using three

different transmission speeds.

The results ware obtained using two computers of a Intel

Core 2 Duo processor 2.66 GHz and 4 GB RAM. These two

computers are connected via Ethernet of 10 BASE-T, 100

BASE-T, and 1000 BASE-T. An ARE of Maglog runs on a

JRE 1.6.0 17 on Mac OS X 10.6.2. A mobile agent consists

of 1020 program codes and their total size is 842 kB.

Figure 4 shows the results. The no transfer shows the

results of when the all of program codes are shared in

advanced, and besides cache mechanism is not deployed. At

first migration, the migration time with our cache mechanism

(with cache) was slower than without cache mechanism

(without cache). However, after second migration, the mi-

gration time are dramatically improved. In 10 BASE-T, the

migration time of with cache is 14.8% of the results of

without cache; In 100 BASE-T, it is 16.8%; in 1000 BASE-

T, 50%. They are almost same with the result of no transfer
mechanism. These results show that as the network speed

slower, our cache mechanism is more effective.

B. Effectiveness on Agent Migration Patterns

In order to confirm the impact on various mobile agent

migration patterns, we conducted agent migration time on

shuttle, round, star, and random patterns (Figure 3). In this

experiment, we use 1000 BASE-T.

Figure 5(a) shows the result of the shuttle pattern. This

pattern causes cache miss hit in outward migration and cache

hit in homeward migration. Thus, the percentage of the

shuttle pattern’s migration time is shorter than the one-way

pattern.

Figure 5(b) shows the result of the round pattern. This

pattern is a repetition of the one-way patterns, except the

last migration. Therefore, at first trial, all the migrations

except the last cause cache miss hit. Thus, the most of

the migrations causes the cache miss hit, the percentage of

the round pattern’s migration time is longer than the other

migration patterns.

Figure 5(c) shows the result of the star pattern. This

pattern is a repetition of the shuttle patterns. Thus, the

percentage of the star pattern’s migration time is shorter than

the shuttle pattern.

In these results, at the first migration, the with cache
is slower than the without cache. However, after second

migration, the with cache is faster than the without cache.

Moreover, averages of migration times with cache from the

first to the fourth trial are always better than the average

of without cache. Therefore, it is better to deploy our

mechanism if mobile agents use any same migration pattern

more than 4 times.

Further, we plot migration times of the random pattern and

its regression curve in Figure 6. In this pattern, we prepared

only one agent and 10 nodes. The agent randomly selects one

node from 9 nodes (10 - current node) and migrates there.

We repeated the random migration 100 trials. In Figure 6,

the migration times of no transfer and without cache are not

so different in each trial. They are around about 105 msec in

without cache and about 45 msec in no transfer. In contrary,

in with cache, as the number of migration trial increases, the

migration time decreases. At trial 5, with cache overtakes

without cache and approaches to 5 msec (the result of no
transfer).

C. Experience on Practical System

We conducted a experience on a meeting scheduling sys-

tem [12], [13] to evaluate the effectiveness of the proposed

method on practical systems.

This meeting scheduling system has been developed using

Maglog. When a user intends to call a meeting, he only

inputs information about the meeting. On behalf of the

inviter, mobile agents move around each invited user’s

654

 0

 1000

 2000

 3000

 1 2 3 4

M
ig

ra
tio

n
T

im
e

[m
se

c]

Number of Trials

No Transfer
Without Cache

With Cache

(a) 10BASE-T

 0

 1000

 2000

 3000

 1 2 3 4
M

ig
ra

tio
n

T
im

e
[m

se
c]

Number of Trials

No Transfer
Without Cache

With Cache

(b) 100BASE-T

 0

 1000

 2000

 3000

 1 2 3 4

M
ig

ra
tio

n
T

im
e

[m
se

c]

Number of Trials

No Transfer
Without Cache

With Cache

(c) 1000BASE-T

Figure 4. Agent migration times on one-way pattern.

 0

 1000

 2000

 3000

 4000

 1 2 3 4

M
ig

ra
tio

n
T

im
e

[m
se

c]

Number of Trials

No Transfer
Without Cache

With cache

(a) Shuttle pattern.

 0

 500

 1000

 1500

 2000

 1 2 3 4

M
ig

ra
tio

n
T

im
e

[m
se

c]

Number of Trials

No Transfer
Without Cache

With Cache

(b) Round pattern.

 0

 1000

 2000

 3000

 1 2 3 4

M
ig

ra
tio

n
T

im
e

[m
se

c]

Number of Trials

No Transfer
Without Cache

With Cache

(c) Star pattern.

Figure 5. Results on each agent migration pattern.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90 100

M
ig

ra
tio

n
T

im
e

[m
se

c]

Number of Migration

No Transfer
Without Cache

With Cache

Figure 6. Results on random migration pattern.

 0

 10

 20

 30

 40

 1 2 3 4 5

P
ro

ce
ss

in
g

T
im

e
[s

ec
]

Number of Trials

Without Cache
With Cache

Figure 7. Results on a meeting scheduling system.

655

computer to ask whether he is able to join the meeting and

negotiate with him if necessary.

In this system, a large number of mobile agents migrate

over the network. Thus, if users want to call many meeting,

then it causes increasing the number of mobile agents. As

result, the system performance degradation occurs.

The results ware obtained using 11 computers of an Intel

Pentium 4 processor 3.0 GHz and 1 GB RAM. These com-

putes are connected via 1000 BASE-T Ethernet. An ARE

of Maglog runs on JRE 1.5.0 on a Turbolinux 10 (Kernel

2.6.0). Additionally, in order to reduce the measurement

error associated with user operations, we substitute dummy

programs for the all of the user operations.

Figure 7 shows the result. Even in the first trial, the

performance is almost same between with cache and without
cache. After the second trial, the migration time of with
cache is about half of without cache. To be precise, it is

52% without cache. This result shows that our proposed

cache mechanism is really efficient in practical mobile agent

applications.

V. CONCLUSION

In this paper, we proposed a cache mechanism of program

codes for reducing data traffic on mobile agent migration.

Since our method works on an agent runtime environment, it

is independent from mobile agent migration strategies. Thus,

it does not affect the implementation of each mobile agent.

We implemented our mechanism on a mobile agent frame-

work, called Maglog, and conducted experimental results

on a meeting scheduling system. In this experiment, our

cache mechanism improved the performance of the system

by 52%.

REFERENCES

[1] T. Chia and S. Kannapan, “Strategically mobile agents,” in
Proceedings of the First International Workshop on Mobile
Agents, 1997, pp. 149–161.

[2] K. Jurasovic, G. Jezic, and M. Kusek, “A performance anal-
ysis of multi-agent systems,” International Transactions on
Systems Science and Applications, vol. 1, no. 4, pp. 335–342,
2006.

[3] T. Takahashi and H. Mizuta, “Efficient agent-based simulation
framework for multi-node supercomputers,” in Proceedings of
the 38th conference on Winter simulation. Winter Simulation
Conference, 2006, pp. 919–925.

[4] Y. Lee and K. Kim, “Optimal migration path searching
using path adjustment and reassignment for mobile agent,”
in Proceedings of the 2008 Fourth International Conference
on Networked Computing and Advanced Information Man-
agement, vol. 2, 2008, pp. 564–569.

[5] N. Miyata and T. Ishida, “Community-based load balanc-
ing for massively multi-agent systems,” in Massively Multi-
Agent Technology, ser. Lecture Notes in Computer Science.
Springer, 2008, vol. 5043, pp. 28–42.

[6] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding
code mobility,” IEEE Transactions on Software Engineering,
vol. 24, pp. 342–361, 1998.

[7] National Institute of Standards and Technology, Secure Hash
Standard, ser. Federal Information Processing Standard 180-
1. US Department Commerce, 1995.

[8] S. Motomura, T. Kawamura, and K. Sugahara, “Logic-based
mobile agent framework with a concept of “field”,” Journal
of Information Processing Society Japan, vol. 47, no. 4, pp.
1230–1238, 2006.

[9] T. Kawamura, S. Motomura, and K. Sugahara, “Implemen-
tation of a logic-based multi agent framework on java envi-
ronment,” in Proceedings of IEEE International Conference
on Integration of Knowledge Intensive Multi-Agent Systems,
2005, pp. 486–491.

[10] M. Banbara, N. Tamura, and K. Inoue, “Prolog cafe : A
prolog to java translator system,” in Proceedings of the
16th International Conference on Applications of Declarative
Programming and Knowledge Management, 2005, pp. 1–11.

[11] Oracle Corporation, “Object Serialization,” Web, 2011,
http://docs.oracle.com/javase/6/docs/technotes/guides/
serialization/.

[12] T. Kawamura, S. Motomura, K. Kagemoto, and K. Sugahara,
“Meeting arrangement system based on mobile agent technol-
ogy,” in Proceedings of the 2nd International Conference on
Web Information Systems and Technologies, 2006, pp. 117–
120.

[13] T. Kawamura, Y. Hamada, K. Sugahara, K. Kagemoto,
and S. Motomura, “Multi-agent-based approach for meeting
scheduling system,” in Proceedings of IEEE International
Conference on Integration of Knowledge Intensive Multi-
Agent Systems, 2007, pp. 79–84.

656

