
DATA TRAFFIC REDUCTION FOR MOBILE AGENT MIGRATION

Masayuki Higashino, Kenichi Takahashi, Takao Kawamura andKazunori Sugahara
Graduate School of Engineering, Tottori University, Tottori, Japan
{s032047, takahashi, kawamura, sugahara}@ike.tottori-u.ac.jp

Keywords: Mobile agent, Data traffic reduction, Cache.

Abstract: In this paper, we propose a method of reducing data traffic on mobile agent migration. Mobile agents are able
to simplify network programming with autonomous process migration as compared with inter-process com-
munication. However, mobile agents increase data traffic bytransfer of program codes when migration. There-
fore, many researchers have proposed for reducing data traffic on mobile agent system with agent behaviour.
These methods complicate the algorithm of agent behaviour.On the other hand, we focus on a mechanism
of mobile agent migration, and our method is fully independent from agent behaviour. Our method reduces
program code traffic with cache on mobile agent runtime environment. We have implemented our technique
on a mobile agent framework, and experimented on a practicalmobile agent system. As a result, the system’s
performance has improved to 52%.

1 INTRODUCTION

In recent years, various devices such as personal com-
puters, mobile phones, car navigation systems, televi-
sions and etc., are connected to the Internet. Addi-
tionally we are able to use wired (e.g., xDSL, FTTx)
or wireless (e.g., Wi-Fi, WiMAX) connections to the
Internet easily by improvement of networking infras-
tructures. Therefore, becoming a ubiquitous network
society is a reality. Advances in technology such as
RFID, sensor and etc., computers embedded in every
environment are able to work together to autonomous.
Thus, the user will be able to receive services appro-
priate to the situation.

In order to develop a system that is constructed
with a wide variety of autonomous computers will
require a complex network programming. In a tra-
ditional network programming based on IPC (Inter-
process communication) such as Socket and RPC
(Remote Procedure Call), it is necessary to develop
a separate program for senders and receivers. If there
are changes to programs of senders or receivers then
it is necessary to change the programs on both sides.
It makes development of the system difficult.

Therefore, a mobile agent technology has at-
tracted attention. Mobile agents simplify network
programming using autonomous process migrations
instead of inter-process communications. A Mobile
agent running on agent runtime environments (ARE)
built on computers, and it is able to migrate between

AREs. It is possible to develop network programs
without being aware of communications APIs (Appli-
cation Programming Interface) and communications
protocols by using the single concept of mobile agent
migration. A mobile agent is composed of a runtime
state and program codes and any other data. A mo-
bile agent transfers these elements together when mi-
grate between AREs. Therefore, a mobile agent is
able to continually process same tasks at before and
after migration. Thus, aggregated network programs
in mobile agents make it possible to easily develop
distributed systems.

However, mobile agents degrade the performance
of systems by increases of data traffics. Because
mobile agents transfer not only data but also a run-
time state and program codes. For this reason, many
agent behaviour algorithms have been studied to re-
duce the amount of traffic behaviour (Chia and Kan-
napan, 1997; Jurasovic et al., 2006; Lee and Kim,
2008; Miyata and Ishida, 2008). However, these al-
gorithms are complex. Thus, it lowers the easiness of
developments.

In this paper, we propose a method to reduce traf-
fic by improving the agent transfer mechanisms with
a caching, not the agent behaviour algorithms. The
agent is composed of a runtime state, program codes
set and arbitrary data. The runtime state and mem-
bers of program code set and arbitrary data changes
with the agent activities. In contrast, the each program
code is immutable data. The set of program codes is

351

Figure 1: A mobile agent system overview.

constructed by immutable program codes. Therefore,
program codes are able to cache into AREs.

2 DESIGN

2.1 Mobile Agent System

Figure 1 shows an overview of a mobile agent sys-
tem. A mobile agent is able to running on AREs. The
agent is able to migrate to another AREs via networks.
The mobile agents consist of an execution state, appli-
cation data, and program codes. The execution state
contains variables such as call stack pointers, program
counters and more. It is ever changing while the mo-
bile agent is executing. The application data contains
various resources that depended on mobile agent sys-
tems. The code space contains program codes. The
program codes contain tasks of the mobile agent. The
mobile agent read and executes these program codes
dynamically. Such a mobile agent system is based
on Fuggetta’s executing units model (Fuggetta et al.,
1998).

2.2 Structure of Mobile Agent

The construct of the agent contains cacheable spaces
and un-cacheable spaces. The execution state can-
not be cached because they change from time to time
along with the behaviour of the agent. The applica-
tion data contains the data for a variety of implemen-
tation dependent mobile agent system, the possibil-
ity that the cache implementation dependent. Thus,
in this paper, we do not consider the application data
cache. In reality, the program code space is a set of
program codes such as subroutines and classes. These
program codes have a name. However, if we try to
manage program codes with just the name of the pro-
gram code, when the contents of the program code
has been rewritten, because it loads and executes a
program code is not intended to be the agent cannot
ensure cache coherency.

2.3 Identification of Program Code

Therefore, in order to know that the content of the
program code is changed, the agent runtime environ-
ment manages program codes using not only their
names, but also their hash values as unique identifiers.

Thus, the agent runtime environment ensures pro-
gram code cache coherence between agents. In addi-
tion, without polluting the namespace between differ-
ent agents, that share program codes have same names
but different contents, the agent runtime environment
is able to save memory usage.

2.4 Mobile Agent Migration with Cache

Figure 2 shows a sequence diagram of agent migra-
tion with program code caches. The source ARE
transfers an agent execution state, application data,
and a set of program code identifiers to the destina-
tion ARE. The destination ARE determines whether
program codes is cached in a local cache space us-
ing program code identifiers. If uncached program
codes exist then the destination ARE requests trans-
fer of uncached program codes from the source ARE.
Thus, the caching makes reduction of data traffic on
agent migration.

3 IMPLEMENTS

We implemented our proposal method on Maglog
(Motomura et al., 2006). Maglog is our proposal mo-
bile agent framework. Its ARE is implemented in Java
and runs on Java Runtime Environment (JRE). The
agents are java objects that can run concurrently us-
ing threads.

The program code identifier is generated using
a hash function (SHA-1) to Java bytecode. SHA-1
takes a program code less than 264 bits in length and
can produce a 160-bit identifier. The probability of
that same hash value is created from different pro-
gram codes are extremely small.

The agent execution state, application data, pro-
gram code identifier, and program code are converted
to the byte array by Java Object Serialization, and
transferred between AREs using HTTP/1.1.

4 EXPERIMENTS

4.1 Overhead of Cache Mechanism

In the case of an agent transfer using the cache mech-
anism, it requires the transfer of program code iden-

ICAART 2012 - International Conference on Agents and Artificial Intelligence

352

Figure 2: A sequence diagram of an agent migration with program code caches.

tifiers and the reference to cache space. Therefore,
The agent migration with cache is slower than without
cache on the first an ARE. In other words, an overhead
of the cache mechanism become clear at the agent mi-
gration to the undiscovered ARE.

In order to confirm the overhead of cache mecha-
nism, the agent migration time on a one-way migra-
tion was measured. The results ware obtained using
two computers of a Intel Core 2 Duo processor 2.66
GHz and 4 GB RAM. These two computers are con-
nected via Ethernet of 1000 BASE-T. An ARE of Ma-
glog runs on a JRE 1.6.017 on Mac OS X 10.6.2.
A mobile agent consists of 1020 program codes and
their total size is 842 kB.

Figure 4(a) shows the results of measurements. In
the first agent migration, it shows the overhead of
caching. On the other hand, after second agent mi-
gration, the migration time is decrease by the caching
effect.

4.2 Effect of Cache on Agent Migration
Patterns

In order to confirm the effect of proposed method on
various agent migration patterns as shown in the Fig-
ure 3, the agent migration time was measured by shut-
tle, round, star, and random pattern. The agents, the
computers, and the network speed used to measure
are the same as section 4.1.

Figure 4(b), Figure 4(c), and Figure 4(d) shows
results of agent migration time measurement on agent
migration patterns in the case of shuttle, round and
star. In the migration patterns of all, the migration
with cache is slower than the migration without cache
at the first migration. However, after that, the migra-
tion with cache is faster than the migration without
cache.

Figure 5 shows results of migration time measure-
ment and regression curves on the random migration
pattern. As a migration times increases, the regres-

sion curves of migration with cache approach the re-
gression curves of migration without cache.

4.3 Effect of Cache on Practical System

We have experimented with a meeting scheduling sys-
tem (Kawamura et al., 2006) in order to evaluate the
effectiveness of the proposed method in practical sys-
tems.

This meeting scheduling system is developed with
Maglog. When a user intends to call a meeting, he
only inputs information about the meeting. On be-
half of the inviter, mobile agents move around each
invited user’s computer to ask whether he is able to
join the meeting and negotiate with him if necessary.
In this system, a large number of agents migrate over
the network. Thus, if users want to call many meeting,
it causes increasing the number of agents. As result,
the system performance degradation occurs.

The results shown have been obtained using 11
computers of Intel Pentium 4 processors 3.0 GHz with
1 GB RAM and connected via 1000 BASE-T Ether-
net. The ARE runs on JRE 1.5.0 on Turbolinux 10
(Kernel 2.6.0). The experiment measured the process-
ing time required to arrange meeting dates. However,
processing of user input required parts have substi-
tuted by dummy program.

In the result, In the first trial, there is no difference
between with cache and without cache. However, in
the second trial, the migration without cache required
25 s. On the other hand, the migration with cache
required 12 s. From these results, the performance of
meeting scheduling system has improved to 52%.

5 CONCLUSIONS

In this paper, we propose a method of reducing data
traffic on mobile agent migration. We focus on
a mechanism of mobile agent migration, and our

DATA TRAFFIC REDUCTION FOR MOBILE AGENT MIGRATION

353

(a) One-way pattern. (b) Shuttle pattern. (c) Round pattern. (d) Star pattern. (e) Random pattern.

Figure 3: Patterns of agent migration.

 0

 1000

 2000

 3000

 1 2 3 4

M
ig

ra
tio

n
T

im
e

[m
se

c]

Number of Trials

No Transfer
Without Cache

With Cache

(a) One-way pattern.

 0

 1000

 2000

 3000

 4000

 1 2 3 4

M
ig

ra
tio

n
T

im
e

[m
se

c]

Number of Trials

No Transfer
Without Cache

With cache

(b) Shuttle pattern.

 0

 500

 1000

 1500

 2000

 1 2 3 4

M
ig

ra
tio

n
T

im
e

[m
se

c]

Number of Trials

No Transfer
Without Cache

With Cache

(c) Round pattern.

 0

 1000

 2000

 3000

 1 2 3 4

M
ig

ra
tio

n
T

im
e

[m
se

c]

Number of Trials

No Transfer
Without Cache

With Cache

(d) Star pattern.

Figure 4: Results of agent migration pattern.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90 100

M
ig

ra
tio

n
T

im
e

[m
se

c]

Number of Migration

No Transfer
Without Cache

With Cache

Figure 5: Results of random migration pattern.

method is fully independent from agent behaviours.
Our method reduce program code traffic with cache
on mobile agent runtime environment.

We have implemented our technique on a mobile
agent framework, and experimented on a practical
mobile agent system. As a result, the performance
of system has improved to 52%.

REFERENCES

Chia, T.-H. and Kannapan, S. (1997). Strategically mo-
bile agents. InProceedings of the First International
Workshop on Mobile Agents, pages 149–161, London,
UK.

Fuggetta, A., Picco, G. P., and Vigna, G. (1998). Under-
standing code mobility.IEEE Transactions on Soft-
ware Engineering, 24:342–361.

Jurasovic, K., Jezic, G., and Kusek, M. (2006). A per-
formance analysis of multi-agent systems.Interna-
tional Transactions on Systems Science and Applica-
tions, 1(4):335–342.

Kawamura, T., Motomura, S., Kagemoto, K., and Sugahara,
K. (2006). Meeting arrangement system based on mo-
bile agent technology. InProceedings of the 2nd In-
ternational Conference on Web Information Systems
and Technologies, pages 117–120.

Lee, Y. and Kim, K. (2008). Optimal migration path search-
ing using path adjustment and reassignment for mo-
bile agent. InProceedings of the 2008 Fourth Interna-
tional Conference on Networked Computing and Ad-
vanced Information Management, pages 564–569.

Miyata, N. and Ishida, T. (2008). Community-based load
balancing for massively multi-agent systems. In
Massively Multi-Agent Technology, volume 5043 of
Lecture Notes in Computer Science, pages 28–42.
Springer.

Motomura, S., Kawamura, T., and Sugahara, K. (2006).
Logic-based mobile agent framework with a concept
of “field”. Journal of Information Processing Society
Japan, 47(4):1230–1238.

ICAART 2012 - International Conference on Agents and Artificial Intelligence

354

