
SICE Annual Conference 2010 
August 18-21, 2010, The Grand Hotel, Taipei, Taiwan 

 

 

¥400 © 2010 SICE 

A Method of Transparent Swapping Control for
Mobile Agents

Masayuki HIGASHINO, Toshihiko SASAMA, Takao KAWAMURA and Kazunori SUGAHARA
Department of Information and Electronics

Graduate School of Engineering Tottori University

4-101, Koyama-Minami, Tottori 680-8552, JAPAN

Email: {s032047, sasama, kawamura, sugahara}@ike.tottori-u.ac.jp

Abstract—In a mobile agent system, a number of agents
concentrate on one computer according to circumstances. Many
mobile agent frameworks support a function of persistent agents
because the computer cannot retain many agents in limited
amount of memory.

However, an agent programmer is forced to design based on
careful study of the actual situation of the resources. In addition,
there is a problem with inability to cope with unexpected
circumstances of the resources. In this paper, we present a method
of transparent persistent agents according to memory usage of an
agent runtime environment. Further, we implement our proposed
method, and evaluate on a practical application of mobile agent
system.

Keywords—Mobile Agent, Swapping.

I. INTRODUCTION

Recently computing systems have been usually composed

of computers connected by a network, and that is called a

distributed system. Mobile agent technology is an important

issue to construct distributed systems. In a mobile agent

system, a number of autonomous agents cooperate mutually

and achieves given tasks. These agents are spread on some

computers and migrate among these by computer networks.

However, a number of agents concentrate on one computer

according to circumstances. For execution of many agents

on one computer at same time, a large amount of resources

such as mass memory capacity and a fast CPU are required.

Consequently, under the limited resource circumstances, some

agents on the computer should be swapped out to second

storage such as a hard disk drive.

In order to realize swapping out agents, a mobile agent

framework has to support persistence of agents. Many mobile

agent frameworks have been studied, and several mobile agent

frameworks, such as Aglets[1] and MobileSpaces[2], support

persistence of agents. However, the feature of persistence is

provided as a function of called by agent. For this reason,

there are the following problems:

• It requires complex programming about persistence of

agents.

• An agent programmer is forced to design based on careful

study of the actual situation of resources.

• An agent runtime environment crashes if it exceed mem-

ory limit unexpectedly.

In this paper, as a solution for these problems, we propose

a method of transparent swapping control for a mobile agent

Fig. 1. Agent states.

system. This method swaps agents between memory and

secondary storage automatically according to memory usage of

an agent runtime environment. Thus, it is possible to develop

a highly-reliable application of mobile agent system without

writing program about the persistence of agents.
This paper is organized in 4 sections. The proposed design

is described in Section 2. We describe the implementation in

Section 3, and the evaluation on a practical application of

mobile agent system in Section 4. Finally, Section 5 presents

some concluding remarks.

II. DESIGN

In general, a mobile agent system consists of agents and

an agent runtime environment (hereafter referred to as ARE).

Additionally, The ARE is implemented as a process in operat-

ing system, and the agents are implemented as threads in the

process. A large number of agents are performed concurrently

in an ARE. Our proposal is premised on this architecture.
The remaining of this section will explain each of how to

realize transparent swapping control of agents according to

memory usage of an ARE.

A. Agent States
In order to realize the ARE swap-in and swap-out agents

according to memory usage, the ARE needs to get a handle

on each state of agent. Because some agents may be using

resources which includes files and devices, and additionally,

that may be in a dialogue with users of this system or the

other agents. Accordingly, we defined six states of agents to

determine the possibility of swapping them. Fig 1 shows an

agent states.
1) CREATED: To begin with, an agent is CREATED. Then

in order to the agent is registered in an agent scheduler, awaits

acceptance of an ARE. After that the ARE assigns it the state

WAITING. Note that in this state, the agent is not stored in

memory or swap yet.

PR0001/10/0000-0575- 575 -



TABLE I
SWAPPING PRIORITIES.

Priority Agent State Description

HIGH ZOMBLE All of these agents are swapped out at one
time.

MIDDLE BLOCKED These agents are swapped out in order of
average amount of a blocked time.

LOW WAITING These agents are swapped out from back-
ward of the queue.

2) WAITING: In this state, the agent is created from pro-

gram codes, or cloned from the other agent, or migrated from

the other ARE on the network. Note that on this occasion, if

capacity of memory is filled up then, the agent is loaded into

secondary storage. If not, the agent is loaded into memory.

In addition, the ARE assigns an agent according to memory

usage as a FIFO (first-in, first-out) method.
3) RUNNING: An agent has to be on the memory in

order to execute procedures. In our proposals, the memory

is managed by controlling input to the RUNNING from other

states.
4) BLOCKED: If an agent waits a message from other

agents, a thread of the agent stops, and so the agent is blocked.

When the blocked agent receives the message, a thread of the

agent transit to RUNNING through WAITING, and so the agent

runs.
5) ZOMBIE: If an agent finishes on success or failure,

a thread of the agent stops permanently. Note that on this

occasion, the agent remain on a memory or a swap yet.
6) DEAD: In this state, an ARE erase the agent from a

memory space and a disk space.

B. Swapping Timing
1) Swapping Out: An ARE can swap out any agents unless

the agent is RUNNING. A swapping out is executed when

an agent transition to RUNNING. An ARE must free some

memory to execute the agent.
2) Swapping In: A swapping in is executed when an agent

transition from WAITING to RUNNING.

C. Swapping Out Priority
In order to improve execution efficiency, our proposal

method defines swapping priorities as shown TABLE I. An

ARE swaps out agents in order of this priorities.

III. IMPLEMENTATION

We have implemented our proposal method on Maglog[3],

[4]. Maglog is our proposal mobile agent framework, and we

took up as an example of a mobile agent framework. It is based

on Prolog and is implemented by extending PrologCafé[5],

which is a Prolog-to-Java source-to-source translator system.

The ARE is implemented in Java and runs on any platform

providing a Java Runtime Environment(JRE). The agents are

java objects which can run concurrently using threads. Using

Java Object serialization, the ARE migrate and swap-in/swap-

out agents. Fig 2 shows an implementation of the agent

scheduler that based on our proposal architecture.

Fig. 2. An implementation of an agent scheduler that based on our proposal
architecture.

IV. EXPERIMENTS

In order to confirm an effect of our proposal method, we

applied that to our distributed e-Learning system[6] as an

example of a practical application. The system is based on

P2P architecture and every user’s computer plays the role of a

client and a server. In addition, each exercise is implemented

as an agent. However, in this system, it often happens that

many agents run at the same time on the same computer. Then

the computer kept crashing as a P2P node. In experiments, we

set a capacity of the memory usage to 64MB in spite of the

total size of agents is 300MB. Then, we concentrate all agents

on the one computer. As a result, the system has run stably

without an out of memory crash.

V. CONCLUSION

In this paper, we have proposed and implemented a method

of transparent swapping control on a mobile agent framework.

In order to confirm the effect of our proposal method, we have

applied that to a practical distributed system with a mobile

agent technology. As a result, all nodes in the system have

run without an out of memory crash.

REFERENCES

[1] D. B. Lange and M. Oshima, Programming and Deploying Java Mobile
Agents with Aglets. Addison Wesley, 1998.

[2] I. Satoh, “Mobilespaces: A framework for building adaptive distributed
applications using a hierarchical mobile agent system,” in Proc. IEEE
International Conference on Distributed Computing Systems. IEEE
Press, April 2000, pp. 161–168.

[3] S. Motomura, T. Kawamura, and K. Sugahara, “Logic-based mobile agent
framework with a concept of “field”,” IPSJ Journal, vol. 47, no. 4, pp.
1230–1238, 4 2006.

[4] T. Kawamura, S. Motomura, and K. Sugahara, “Implementation of a
logic-based multi agent framework on java environment,” in Proceedings
of IEEE International Conference on Integration of Knowledge Intensive
Multi-Agent Systems, H. Hexmoor, Ed., 4 2005, pp. 486–491, waltham,
Massachusetts, USA.

[5] M. Banbara and N. Tamura, “Translating a linear logic programming
language into Java,” in Proc. ICLP’99 Workshop on Parallelism and Im-
plementation Technology for (Constraint) Logic Programming Languages,
M.Carro, I.Dutra et al., Eds., December 1999, pp. 19–39.

[6] T. Kawamura and K. Sugahara, “A mobile agent-based p2p e-learning
system,” IPSJ Journal, vol. 46, no. 1, pp. 222–225, 1 2005.

- 576 -


	Back



