
TOWARD THE MARRIAGE OF XML AND MOBILE AGENTS
– UTILIZING XML-RPC AS A MIGRATION MEDIA –

Kazunari MEGURO
The Graduate School of Engineering

Tottori University
4-101, Koyama-Minami

Tottori, JAPAN
email: meguro@tottori-u.ac.jp

Shinichi MOTOMRUA, Takao KAWAMURA and Kazunori SUGAHARA
Information Media Center, Faculty of Engineering

Tottori University
4-101, Koyama-Minami

Tottori, JAPAN
email: motomura@tottori-u.ac.jp,{kawamura, sugahara}@ike.tottori-u.ac.jp

ABSTRACT
In this paper, we present usages of XML-RPC and the ef-
fectiveness in mobile agent frameworks. In the mobile
agent framework, XML-RPC has a usage as a migration
media. To confirm the effectiveness, we implement these
functions in a mobile agent framework. In order to realize
a migration mechanism, custom Object Serialization is im-
plemented to customize Java’s built-in serialization mecha-
nism. For deserialization, a dynamic class loader is imple-
mented. If no custom Object Serialization is used, an object
cannot be deserialized on a remote host, because the class
description of the object may not be in the remote host.

KEY WORDS
Distributed Agent, XML-RPC, Application Interface, Mi-
gration

1 Introduction

The Extensible Markup Language (XML) is a W3C-
recommended general-purpose markup language that sup-
ports a wide variety of applications. Its main purpose is
to facilitate the sharing of data across different information
systems, particularly in systems connected via a network.
Since XML has characteristics which is content based and
allows semantic data interoperability, XML has become
widely used as a general purpose data format. For ex-
ample, languages based on XML (such as RSS, MathML,
XHTML, Scalable Vector Graphics) are defined. XML is
also used for Remote Procedure Call(RPC). XML-RPC[1]
uses XML to encode parameters and results and HTTP as a
transport mechanism. XML-RPC is useful for developing
distributed systems, in particular web applications.

Mobile agent technology is also attracting attention
as a key technology for developing distributed systems. In
mobile agent systems, the most important function is agent
migration. Generally, RMI is used as a technology that mi-
grates agent[2] [3], however RMI is blocked by common
firewalls. HTTP protocol can work through many common
firewall security measures without requiring changes to the
firewall filtering rules. Therefore, HTTP protocol is suit-
able in the environment with firewalls as the communica-
tion protocol. An Example of a protocol based on HTTP

protocol, there is XML-RPC protocol supported in various
languages.

However, there is no research on mobile agent sys-
tems using XML-RPC as a migration media. On the other
hand, XML-RPC is used as application interface of various
systems, however there is few research[4] on mobile agent
systems using XML-RPC. In this paper, we propose that
mobile agent frameworks utilize XML-RPC to realize the
following mechanism.

1. Migration mechanism: Agents migrate from one com-
puter to another one using XML-RPC as a migra-
tion mechanism. RMI is usually used as the transport
mechanism, however RMI is often blocked by many
firewalls. HTTP connections used as the transport
connections for XML-RPC can work through many
common firewall security measures without requiring
changes to the firewall filtering rules.

2. Compatibility of application interface: Agents have an
interface which is accessible from applications, writ-
ten in any other language, which support XML-RPC.
XML-RPC is supported by many programming lan-
guages, such as Perl, Ruby and ECMAScript which is
often referred to as JavaScript or JScript.

To confirm efficiency of XML-RPC in mobile agent
frameworks, we implement a migration mechanism and an
application interface using XML-RPC in a mobile agent
framework. This paper is organized in 5 sections. We de-
scribe our design goals for the proposed system in Section
2. In Section 3, we describe the implementation of the pro-
posed system. In Section 4, we present result of achieve-
ment. Finally, in Section 5, we describe some concluding
remarks.

2 Usage of XML-RPC

2.1 Design of migration mechanism using XML-RPC

Migration of agents using XML-RPC is that a procedure
is called with the agents as parameters. In order to realize
the migration mechanism, client stubs and server stubs are

necessary to make a remote procedure call look as much as
possible like a local one.

1. Client stubs encode parameters to XML documents
and send them over the network to server stubs in an-
other computer. The encoding is called marshalling.

2. Server stubs decode XML documents to the parame-
ters and dispatch them to called procedure. The de-
coding is called unmarshalling.

In mobile agent frameworks which are implemented
in a Java environment, agents consist of Java ob-
jects. Java provides Object Serialization for object mar-
shalling/unmarshalling. Object Serialization is a mecha-
nism built into a core Java libraries for writing a graph of
objects into a stream of data. However, only Object Se-
rialization is not enough. If no custom Object Serializa-
tion is used, an object which is an instance of a user de-
fined Java class cannot be deserialized on a remote host,
because the class description of the object may not be in
the remote host. Therefore dynamic class loaders are in-
troduced to custom Object Serialization. A dynamic class
loader contains bytecodes of Java classes of an agent and
loads the Java classes if necessary. When the object of
an agent is transferred to other computer, the dynamic
class loader which is corresponding with the agent is also
transferred. Java ObjectOutputStream class and Java Ob-
jectInputStream class which are used in Object Serializa-
tion are extended, and the extended classes are used in
custom Object Serialization. When an object is serial-
ized by custom Object Serialization, a codebase informa-
tion is recorded byannotateClass method which over-
rides annotateClass method of ObjectOutputStream
class. The codebase information shows a position where
the dynamic class loader locates. When the object is de-
serialized, the dynamic class loader is retrieved to load
the class byresolveClass method which overrides
resolveClass method of ObjectInputStream class.

2.1.1 Stubs

Figure 1 shows an overview of a client stub and a server
stub which are made with custom Object Serialization. The
DynamicClassLoader object implements a dynamic class
loader. When objects of an agent migrate from computerA
to computerB, the following steps are performed.

1. The DynamicClassLoader object which is corre-
sponding with the agent is serialized to bytecodes by
Object Serialization. The bytecodes are encoded as an
XML document, then the bytecodes are transferred to
B.

2. The XML document is decoded as the bytecodes on
B, then the bytecodes is deserialized to the Dynamic-
ClassLoader object by Object Serialization.

3. The DynamicClassLoader object is registered in the
DynamicClassLoaderRegister object onB, then the
unique key object which is mapped to the Dynam-
icClassLoader object is generated by the Dynamic-
ClassLoaderRegister object. The unique key object
is a Java String object. The Java String object is en-
coded as an XML document, then the XML document
is returned toA.

4. The XML document is decoded as the Java String
object onA. When the objects of an agent is serial-
ized to bytecodes, the String object, that is the unique
key object, as a codebase information is written into
the bytecodes by theannotateClass method. The
bytecodes are encoded as an XML document, then the
bytecodes are transferred toB.

5. The XML document is decoded as the bytecodes
on B. When the bytecodes try to be deserialized,
firstly the unique key object is retrieved by the
resolveClass method. Then the DynamicClass-
Loader object which is mapped to the unique key ob-
ject is retrieved from the DynamicClassLoaderRegis-
ter object. Finally, the bytecodes are deserialized to
the object of the agent with the DynamicClassLoader
by loading the classes.

2.1.2 XML Format

To use XML-RPC as a migration mechanism, an XML
format has to be defined. In XML-RPC, there are
XML-RPC requests and XML-RPC responses. In an
XML-RPC request, the payload is in XML, a single
<methodCall> structure. The<methodCall> must con-
tain a<methodName> sub-item, a string, containing the
name of the method to be called. If the procedure call has
parameters, the<methodCall> must contain a<params>
sub-item. The<params> sub-item can contain any num-
ber of<param>s, each of which has a<value>. In order
to transfer objects of an agent, the name of an agent and
the bytecodes of the objects as<param>s are necessary.
Moreover, the bytecodes have to be encoded as a base64
string because an XML-RPC message is an HTTP-POST
request. Figure 2 shows an example of the XML document
in an XML-RPC request when objects of an agent is trans-
ferred. In an XML-RPC response, the body of the response
is a single XML structure, a<methodResponse>, which
can contain a single<params> which contains a single
<param> which contains a single<value>. In order to re-
turn a transfer result, a boolean data type as a<param> is
suitable. Figure 3 shows an example of the XML document
in an XML-RPC response when a transfer succeeds. The
<methodResponse> could also contain a<fault> which
contains a<value> which is a<struct> containing two
elements, one named<faultCode>, an <int> and one
named<faultString>, a <string>. If a transfer is failed,
the reason as a<string> can be returned.

Figure 1. An overview of a client stub and a server stub which are made with custom Object Serialization.

Figure 2. An example of the XML document in an XML-
RPC request when an agent is transferred.

Figure 3. An example of the XML document in an XML-
RPC response when a deserialization succeeds.

2.2 Design of Application Interface

In mobile agent systems, the methods that application in-
terface need is create agent, kill agent, transfer result and
so on. Figure 4 shows an example of XML document in
an XML-RPC request when objects of agent is created. To
use XML-RPC as an application interface, also an XML
format has to be defined. In an XML-RPC request, the
body of the request is a single<methodCall> structure. In
order to create agent, the parameter of<methodName> is
”createAgent”. If creation of an agent succeed, an example
of the XML document becomes it as well as Figure 3. In
an XML-RPC response, also the body of the response is
a single<methodResponse> structure. If create agent is
succeed, 1 is returned as a data of<value> .

Figure 4. An example of the XML document in an XML-
RPC request when an agent is created.

3 Implementation

Maglog[5] which is our proposed mobile agent framework
is took up as an example of a framework. It is based on
Prolog and is implemented by extending PrologCafe[6],
which is a Prolog-to-Java source-to-source translator sys-
tem. Java is adapted because of its huge class libraries
to build network applications. In Maglog, agent commu-
nicates directly with other agents through a object by the

name of a field.
XML-RPC is used for two purposes in Maglog. One

is an agent migration mechanism that is realized by using
client stubs and server stubs. The other is application inter-
face which is accessible from any other language.

3.1 Client Stubs and Server Stubs

We implement client stubs and server stubs in Maglog.
Figure 5 shows a UML diagram which is an overview
of Maglog classes. The client stub is implemented by
MaglogXmlAgentSerializer class. MaglogXmlAgentSe-
rializer class is extended from ObjectOutputStream class
which defined in the java.io package and is implemented
the serialization algorithm. The server stub is implemented
by MaglogXmlAgentDeserializer class and DynamicClass-
LoaderRegister class. For deserialization, MaglogXmlA-
gentDeserializer class is extended from ObjectInputStream
class which defined in the java.io package and is imple-
mented the deserialization algorithm. The XML encoder
and the XML decoder are implemented by MaglogXmlR-
pcInterface class. MaglogXmlRpcInterface class has func-
tions as an XML-RPC client and an XML-RPC server, so
that the class handles an XML-RPC request and returns
an XML-RPC response. In addition, the class provides an
XML-RPC interface which is accessible from applications.
The class is implemented by Apache XML-RPC[7].

Agent AgentServer AgentServerRemote

XmlRpcAgentServerRemote

MaglogXmlAgentSerializer

+annotateClass()

DynamicClassLoader

MaglogXmlRpcInterface

MaglogXmlAgentDeserializer

+resolveClass()

ObjectInputStream ObjectOutputStream

DynamicClassLoaderRegister

Figure 5. A UML diagram which is an overview of classes
of Maglog.

3.2 Communication with an Agent

An agent server has an XML-RPC interface, which is ac-
cessible from applications written in any other languages

Table 1. Method names of XML-RPC interface in Maglog.

No. Method Name Operation
1 createAgent or killA-

gent
an agent is created or
is killed

2 createField or
deleteField

a field is created or is
deleted

3 fieldAssert or
fieldRetract

a clause is added in
a field or is deleted
from a field

4 getFieldListTerm a list of names of
fields is gotten

5 getAgentListTerm a list of IDs of agents
is gotten

which support XML-RPC. The following operations from
other systems are available through XML-RPC.

1. Create and kill agents

2. Create and delete fields

3. Assert clauses into fields and retract clauses from
fields

4. Get a list of names of fields

5. Get a list of IDs of agents currently existing

The method names of XML-RPC interface are sum-
marized in Table 1.

An application communicates with an agent by writ-
ing data in a field. Table 2 shows the relations between data
type of Maglog and XML-RPC.

Table 2. The relations between data type of Maglog and
XML-RPC.

Maglog XML-RPC
IntegerTerm <i4> or <int>
SymbolTerm <string>
DoubleTerm <double>
ListTerm <array>
StructureTerm or VariableTerm <struct>

4 Experiments

4.1 Agent Migration

This section presents the experimental results for agent mi-
gration using XML-RPC, comparison of agent’s migration
time on each agent’s size, and comparison of agent’s mi-
gration time between RMI and XML-RPC. The following
experiments are examined using RMI and XML-RPC.

• Seven agents migrate between two PCs 100 times.

Table 3. The experimental conditions.

CPU Intel Pentium4 3.2GHz
Memory 1GB
Network 1000Base-T

OS CentOS 5
JRE 1.6.0

Each size of the seven agents is 10 KB, 50 KB, 100 KB,
500KB, 1MB, 10MB and 50MB. Table 3 shows the exper-
imental conditions. Figure 6 shows the experimental code
of the agents. The average times are summarized in Figure
7. In both cases of using RMI and using XML-RPC, when
a size of an agent is smaller, the migration time is shorter.
Moreover, in Each size of agent,the migration speed using
RMI is more superior than that of XML-RPC.

Figure 6. The agent migrates 100 times between DestA and
DestB.

 10

 100

 1000

 10000

 100000

 10 100 1000 10000

tim
e[

m
s]

size[KB]

Agent migration using XML-RPC
Agent migration using RMI

Figure 7. Migration times which seven agents migrate be-
tween two PCs and the jar files of the agents are migrated
between two PCs.

4.2 Application Interface

We have developed a distributed e-Learning[8] [9] system
which has been built using Maglog, and the user inter-
face program of the application is accessed by using XML-
RPC to an agent server. Figure 8 shows a screen-shot of
the user interface program of the system. The program
is developed as a plug-in program of Firefox web browser
with Javascript and XUL which provides a powerful set of
user interface widgets for creating menus, toolbars, tabbed
panels, and hierarchical trees. The program communi-
cates with an agent server using XMLHttpRequest asyn-
chronously. For Example, when a user requests an exercise,
the program sends a fieldAssert request as encoded XML to
an agent server. After that, the program can accept other re-
quest from the user without waiting for the response from
the agent server.

Figure 8. A user interface of the distributed e-Learning
system

5 Conclusion

We proposed two usages of XML-RPC in mobile agent sys-
tem. One was migration mechanism, the other was applica-
tion interface. In order to realize the migration mechanism,
custom Object Serialization has been implemented to cus-
tomize Object Serialization. We confirmed two usages of
XML-RPC by implementing XML-RPC in Maglog. In the
experiment of agent migration, migration speed of agents
using XML-RPC was compared with the time using RMI.
Migration speed of agents using XML-RPC is slower than
that of using RMI. If there are not firewalls among com-
puters, RMI can be used to migrate agents faster. How-
ever, most network systems have the firewall. Therefore,
in common mobile agent systems, XML-RPC is efficient
as compared with RMI. We are implementing persistence

in Maglog. The persistence is introduced for suspending
agents. For example, when a computer will be stopped
while a system is running on Maglog, agents are suspended
then their suspended state and data which agents have are
stored. When the system is running again, the agents’ states
and the data are retrieved then the agents are resumed. In
order to realize the persistence, agents have to be serialized.
In future work, we consider that the efficient utilization of
XML databases which can store serialized agents written
in XML form. Furthermore, we consider the improved im-
plementation of XML-RPC to reduce the difference of mi-
gration speed with RMI.

References

[1]Winer, D.: XML-RPC Specification,
http://xmlrcp.com/spec, (1999).

[2]Osuga, A., Nagai, Y., Irie, Y., Hattori, M. and Honiden,
S.: Plangent: An Approach to Making Mobile Agents
Intelligent, IEEE Internet Computing, Vol.1, No.4,
pp.50-57 (1997).

[3]General Magic: Odyssey.
http://www.genmagic.com/agents/odyssey.html.

[4]van EngelenR, GallivanK, G. G. C.G.: XML-RPC
agents for distributed scientific computing,Proceed-
ings of the IMACS World Congress on Scientific
Computation, Applied Mathematics and Simulation
(2000).

[5]Motomura, S., Kawamura, T. and Sugahara, K.: Logic-
Based Mobile Agent Framework with a Concept of
“ Field”, IPSJ Journal, Vol. 47, No.4, pp.1230-1238
(2006).

[6]Banbara, M. and Tamura, N.: Translating a Linear
Logic Programming Language into Java,Proceedings
of the ICLP’ 99 Workshop on Parallelism and Im-
plementation Technology for (Constraint) Logic Pro-
gramming Languages (M.Carro, I.Dutra et al., eds.),
pp.19-39(1999).

[7]Apache Software Foundation: About Apache XML-
RPC, http://ws.apache.org/xmlrpc/.

[8]Kawamura, T., Kinoshita, S. and Sugahara, K.: A Mo-
bile Agent-Based P2P e-Learning System,Proceed-
ings of the IASTED International Conference Parallel
and Distributed Computing and Systems (Gonzalez,
T., ed.), pp. 873-877(2004). MIT, Cambridge, USA.

[9]Motomura, S., Kawamura, T., Nakatani, R. and Suga-
hara, K.: P2P Web-Based Training System Using Mo-
bile Agent Technologies,Proceedings of the 1st Inter-
national Conference on Web Information Systems and
Technologies, pp.202-205 (2005). Miami, USA.

