
ONEPORT RMI: RMI PROTECTING INTEGRITY AND CONFIDENTIALITY
FOR MOBILE AGENTS

Kazunari MEGURO
The Graduate School of Engineering

Tottori University
4-101, Koyama-Minami

Tottori, JAPAN
email: meguro@tottori-u.ac.jp

Shinichi MOTOMRUA, Takao KAWAMURA and Kazunori SUGAHARA
Information Media Center, Faculty of Engineering

Tottori University
4-101, Koyama-Minami

Tottori, JAPAN
email: motomura@tottori-u.ac.jp,{kawamura, sugahara}@ike.tottori-u.ac.jp

ABSTRACT
In this paper, a new implementation of RMI named
OnePort RMI is proposed. OnePort RMI consists of new
RMI runtime, classes which are implemented interfaces by
RMI specification and MultiChannelSocketFactory. Using
OnePort RMI, when an object on a client invokes meth-
ods of remote objects on a server, the client can use sock-
ets of different types to connect one destination port at the
same time, and the server can accept incoming call from the
sockets on only the port. In order to protect integrity and
confidentiality of our mobile agent framework named Ma-
glog, OnePort RMI is introduced into Maglog. As a result,
each agent can select a socket depending on importance of
data and programs which are contained in their agents. We
emphasize that the proposed OnePort RMI is not only for
mobile agent frameworks such as our Maglog but also for
any RMI applications.

KEY WORDS
Security and Reliability, RMI, Integrity, Confidentiality,
Mobile Agents

1 Introduction

In the construction of network application systems, dis-
tributed models are widely adopted. In particular, mobile
agent technologies are attracting attention as a key tech-
nology for developing distributed systems. Several mobile
agent frameworks have been proposed, such as Aglets[1],
Jinni[2], Mobilespaces[3], and Telescript[4]. Measures
against security threats for mobile agent frameworks have
been studied[5][6][7]. The security measures can be clas-
sified by following aspects:

Authentication is a process which identifies agents. Au-
thentication is necessary for the below aspects.

Authorization is a process to determine what types of
grants an agent has. A computer must be protected
from malicious agents, and an agent must be protected
from malicious computers and agents.

Integrity means the property that agents have not been al-
tered or destroyed in an unauthorized manner. Agents

may be tampered with while agents are on computers
and migrates to other computers.

Confidentiality means the property that agents are not
made available or disclosed in an unauthorized man-
ner. Data and programs which are contained in agents
must be accessible only to agents which are authorized
to have access.

In this paper, we concentrate our discussions on integrity
and confidentiality when agents migrate across a network.
Generally, secure channels between computers via encryp-
tion of network packets are used to protect integrity and
confidentiality. SSL (Secure Sockets Layer) and IPSec
(Security Architecture for Internet Protocol) are illustra-
tive examples of such secure channels. If a secure channel
is used in mobile agent frameworks, all network packets
are encrypted while agents migrate. However, an encryp-
tion process consumes a lot of resources and causes per-
formance degradation. Therefore, selective encryptions of
agents are preferable, i.e., considering costs of encrypting,
some agents have to be encrypted and others do not. In mo-
bile agent frameworks, every agent should be able to select
a communication channel, i.e., secure type or not secure
type. Moreover, each agents should select different secure
channel so that encryption strength can be selected accord-
ing to the importance of agents.

We consider that the above manner for using secure
channels is introduced into mobile agent frameworks which
are implemented in a Java environment. Because, most
mobile agent frameworks, such as the above mentioned
Aglets, Jinni and Mobilespaces, have been implemented
in a Java environment. And these mobile agent frame-
works use Java Remote Method Invocation (hereafter re-
ferred to as RMI)[8] or XML-RPC[9] as transport mecha-
nisms. In mobile agent frameworks based on RMI, when
several channels are used at the same time, the same num-
ber of sockets are required, and as the result, the same num-
ber of ports are required. In most networks, a firewall is
used to prevent unauthorized access to a network, there-
fore the number of open ports are limited to be minimum.
Therefore, it is necessary that one port can be associated
with multiple sockets. However, Sun’s implementation of
RMI cannot realize the requirement mentioned above. For

this reason, we propose new implementation of RMI named
OnePort RMI that multiple sockets can be associated with
one port. On the other hand, XML-RPC uses HTTP as the
transport protocol. Therefore, we build an HTTP server and
an HTTP client with MultiChannelSocketFactory is used
in the inside of OnePort RMI so that the HTTP server can
handle multiple sockets on one port.

To confirm their behaviors, we implement OnePort
RMI and our HTTP client/server on our mobile agent
framework Maglog[10][11]. However, we emphasize that
the proposed OnePort RMI is not only for mobile agent
frameworks such as our Maglog but also for any RMI ap-
plications.

2 Why we cannot use Sun’s implementation
of RMI?

In this section, the behavior of a client communicating with
a server using RMI is described. And, it is explained that
Sun’s implementation of RMI cannot realize the behavior
of RMI which we require.

2.1 Behavior of RMI

RMI enables programmers to create distributed Java
technology-based on Java technology-based applications,
in which the methods of remote Java objects can be in-
voked from other JVM on different hosts. When an object
on a client tries to invoke a method of a remote object on
a server, the object communicates with the stub object on
client’s JVM which is corresponding with the remote ob-
ject. A stub object is client’s proxy for remote objects, and
its roles are to hide network connections and serialization
of parameters. A stub object has an RMIClientSocketFac-
tory object which creates a socket to communicate with a
server. A skeleton object which is corresponding with a
remote object is on server’s JVM, and the skeleton object
invokes methods of the remote object in effect. Roles of
skeleton objects are to hide network connections and de-
serialization of parameters. Stub objects and skeleton ob-
jects are managed by an RMI runtime on each of the JVMs,
moreover the objects are called automatically by each RMI
runtime if necessary. An RMI runtime has an RMIServer-
SocketFactory object which creates a server socket to wait
for incoming calls from clients. RMIClientSocketFactory
and RMIServerSocketFactory are provided by java’s core
library. Figure 1 shows a model of relations among an RMI
runtime, a stub object and a skeleton object.

A server executes the following steps to export a re-
mote object so that an object on a client can invoke methods
of the remote object on the server.

1. An RMIClientSocketFactory object and an RMIS-
erverSocketFactory object are created.

2. A stub object and a skeleton object are generated using
above objects and the port number which is used to

Figure 1. A model of relation among an RMI runtime, a
stub object, and a skeleton object when a object on a client
invokes a method of a remote objects on a server.

wait for incoming calls from clients.

3. The stub object and the skeleton object are registered
in server’s RMI runtime.

4. The stub object is registered in server’s RMI registry
which allows remote objects on the server to register
themselves as available to objects on the client.

When an object on a client tries to invoke a method
of a remote object on a server, the object gets the stub ob-
ject which is corresponding with the remote object from
server’s RMI registry. After that, the object invokes the
method for the stub object. Client’s RMI runtime creates
a socket by the RMIClientSocketFactory object which is
contained in the stub object. Next, client’s RMI runtime
communicates with server’s RMI runtime by the socket.
Furthermore, server’s RMI runtime creates a server socket
by the RMIServerSocketFactory object which is registered
in server’s RMI runtime, after that the server socket com-
municates with the socket.

2.2 The reason that we cannot use Sun’s implementa-
tion of RMI

The behaviors of RMI which we require are that a client
can use sockets of different types at the same time and a
server can accept incoming call from the sockets on only
one port. In order to realize the behaviors, the following
mechanisms are necessary.

1. An RMIServerSocketFactory object must be able to
create multiple server sockets which are correspond-
ing with client’s sockets.

2. A client must be able to select sockets from different
types which are created by an RMIClientSocketFac-
tory object.

In order to implement first mechanism, behaviors of RMIS-
erverSocketFactory and RMIClientSocketFactory are cus-
tomized. And, it is necessary to solve either of the follow-
ing two problems to realize the second mechanism.

1. An RMIClientSocketFactory object is created by a
server, after that when a client tries to use the ob-
ject, the object is managed by the RMI runtime on the
client. Therefore, an object on the client cannot in-
voke methods of the RMIClientSocketFactory object.
Namely, the client cannot create sockets of different
types by the RMIClientSocketFactory object.

2. A server exports an object by using a set of an RMI-
ClientSocketFactory object, an RMIServerSocketFac-
tory object and a port. If a server exports an object by
using pairs of multiple RMIClientSocketFactory ob-
jects and the same port, a client selects requiring RMI-
ClientSocketFactory object.

It is impossible to solve the first problem since RMI spec-
ification does not define the manner to access an RMI run-
time. Moreover, Sun’s implementation of RMI does not
provide the manner to solve the second problem.

3 OnePort RMI

In section 2, we mentioned about the reason why a client
cannot use sockets of different types at the same time by
using Sun’s implementation of RMI. Therefore, we de-
velop new implementation of RMI named OnePort RMI.
It consists of MultiChannelSocketFactory, new RMI run-
time and classes which are implemented interfaces defined
by RMI specification. In the following sections, first, Mul-
tiChannelSocketFactory is described, after that proposed
RMI runtime is described.

3.1 MultiChannel Socket Factory

In a system which uses Sun’s implementation of RMI,
when a server receives a request from a client, the server
creates a ServerSocket object by an RMIServerSocketFac-
tory object. ServerSocket class is provided by java’s core
library. Next, the ServerSocket object creates a server
socket, after that the server socket waits for incoming calls.
In order to create multiple server sockets which are corre-
sponding with connecting sockets, steps of above execution
must be changed as follows:

1. A server socket which is created by a ServerSocket
object receives the type of a socket from a client.

2. Another server socket which is corresponding with
the type of the socket is created, after that the server
socket communicates with client’s socket.

For sending and receiving the type of a socket, MultiChan-
nelClientSocketFactory class and MultiChannelServer-
SocketFactory class are developed. MultiChannel-
ClientSocketFactory class implements RMIClientSocket-
Factory interface, and MultiChannelServerSocketFactory
class implements RMIServerSocketFactory interface. Fur-
thermore, MultiChannelServerSocket class is developed so

Figure 2. A relation of classes which are contained in Mul-
tiChannelSocketFactory.

that a server socket which is corresponding with the type
of a socket is created. Figure 2 shows a relation of above
classes. The above classes are named as MultiChannel-
SocketFactory.

3.2 Proposed RMI runtime

In order to export remote objects in which identical port
number is associated with multiple RMIClientSocketFac-
tory, we develop new RMI runtime. Our RMI runtime is
based on an Object Request Broker (hereafter referred to
as ORB) which we have developed. The main components
of our ORB are described as follows:

ORBServer plays a server role in our RMI runtime. It
accepts requests from server sockets.

ORBClient plays a client role in our RMI runtime. When
an object on a client invokes methods of a remote ob-
ject on a server, ORBClient communicates with the
server instead of the object.

ORBStubFactory generates a stub object, a skeleton ob-
ject, and a reference which are corresponding with a
remote object.

ORBDirectory provides the following two functions. The
first is the function to register objects which are gener-
ated by ORBStubFactory. The second is the function
to search the registered objects.

In our ORB, the following steps are executed when a server
exports a remote object. First, ORBServer receives an
RMIServerSocketFactory object. Next, ORBStubFactory
generates a stub object using a pair of an RMIClientSock-
etFactory and a port. Furthermore, ORBServer creates an
unique identifier which is corresponding with the stub ob-
ject. Finally, ORBServer registers the identifier and the

Figure 3. A UML sequence diagram of which a server exports a remote object using our RMI runtime.

stub object in ORBDirectory. In consequence of the above
steps, a stub object can be generated using a pair of the
other RMIClientSocketFactory object and the same port
and be registered in ORBDirectory. Namely, OnePort RMI
can realize that a server exports a remote object using pairs
of multiple RMIClientSocketFactory objects and the same
port. Figure 3 shows a UML sequence diagram of which
a server exports a remote object using our RMI runtime.
The UnicastRemoteObject class has a static method named
export for exporting a remote object. The UnicastRemo-
teObject class is defined by RMI Specification.

In practice, MultiChannelClientSocketFactory class
and MultiChannelServerSocketFactory class are used in-
stead of RMIClientSocketFactory class and RMIServer-
SocketFactory class.

4 Implementation

OnePort RMI implements interfaces defined by RMI spec-
ification, and it includes above RMI runtime. Figure 4
shows an overview of their classes.

4.1 Secure Channels

We develop the following two secure channels into Mul-
tiChannelSocketFactory. One is named DESChannel in
which a socket is encrypted using the Data Encryption
Standard (hereafter referred to as DES) which is a cryp-
tographic algorithm. The other is SSLChannel in which
a socket is implemented using SSL. SSLChannel has
the following security measures,　 therefore its secu-
rity is stronger than DESChannel. On the other hand,
DES Channel is not necessary to have a digital certification
which is needed by SSLChannel, therefore DESChannel
provides simple manner for utilizing.

Endpoint authentication Two computer’s identities can
be authenticated using asymmetric cryptography such

as Public Key Infrastructure.

Integrity checking Message transport includes a message
integrity check using a keyed message authentication
code.

Key exchangeA symmetric cipher which is used for en-
cryption is exchanged between computers on periodic
basis.

DES Channel is realized by DESSocket class and
DESServerSocket class which extend Socket class
and ServerSocket class and implement DES encryp-
tion. SSLChannel is realized by SSLSocket class and
SSLServerSocket class which are provided by Java Secure
Socket Extension. The socket which is not encrypted is
defined as RAWChannel.

4.2 Applying to Mobile Agent Framework

We have proposed a mobile agent framework named Ma-
glog which is based on Prolog and is implemented in a Java
environment. In Maglog, the following predicate is intro-
duced so that each agent can select a channel.

change channel(PrevChannel,NewChannel)

After an agent is executed the above predicate, the agent
usesNewChannel to migrate to other computers. A kind
of channels before changing is bound toPrevChannel .
The following three channels are defined.

1. RAW: Above RAWChannel.

2. DES: Above DESChannel.

3. SSL: Above SSLChannel.

Figure 4. A UML diagram which is an overview of classes
of OnePort RMI.

5 Experiments

In this section, sample codes using OnePort RMI are
shown. And the experimental results for comparison of
the round trip time between OnePort RMI and Sun’s im-
plementation of RMI are shown.

5.1 Sample code

Figure 5 shows a part of a sample code when a
server provides HelloImpl objects using DESChannel and
SSL Channel for clients. In this code, HelloImpl ob-
jects are created, and the objects are exported by using
DES Channel and using SSLChannel. After that the ob-
jects are registered in server’s RMI registry with names of
“//server/HelloDES” and “//server/HelloSSL”.

Figure 6 shows a part of a sample code when a
client invokes the HelloImpl objects on the server using
DES Channel and SSLChannel. First, the client takes
stub objects from server’s RMI registry by invoking lookup
method with the above names. Next, the client invokes a
method of the stub objects. Incidentally, HelloImpl class
implements Hello interface.

5.2 Comparison of round trip time between OnePort
RMI and Sun’s implementation of RMI

This section shows the experimental results for compari-
son of the round trip time for a remote method invocation
between OnePort RMI and Sun’s implementation of RMI.
In the experiments, two PCs are connected via a 100Base-
T network. Under each implementation, the experiments

Figure 5. HelloImpl objects are provided using
DES Channel and SSLChannel for clients.

Figure 6. A client invokes the HelloImpl objects using
DES Channel and SSLChannel.

are performed 100 times using three channels in the fol-
lowing condition. A client invokes a method of a remote
object on a server with an argument of a byte array. The
data sizes of the argument are 1KB, 5KB, 10KB, 50KB,
100KB, 500KB, and 1000KB. The total times are shown in
Figs. 7, 8 and 9. The differences of the round trip time be-
tween OnePort RMI and Sun’s implementation of RMI are
small at all channels. We can confirm the execution speed
of OnePort RMI is practical.

6 Conclusion

We have developed new implementation of RMI named
OnePort RMI. OnePort RMI consists of new RMI run-
time, classes which are implemented RMI specification and
MultiChannelSocketFactory. Using OnePort RMI, when
an object on a client invokes methods of remote objects
on a server, the client can use sockets of different types
to connect one destination port at the same time, and the
server can accept incoming calls from the sockets on only
the port. We have developed two secure channels such as
DES Channel and SSLChannel into MultiChannelSocket-
Factory. When other secure channels are needed, they can
be added to MultiChannelSocketFactory easily.

Note that though we have confirmed the effectiveness
of OnePort RMI on our mobile agent framework Maglog,

 1

 10

 100

 1000

 10000

 1 10 100 1000

tim
e[

m
s]

data size[KB]

OnePort RMI
Sun’s implementation of RMI

Figure 7. Comparison of the round trip time between
OnePort RMI and Sun’s implementation of RMI when
RAW Channel is used.

 100

 1000

 10000

 100000

 1 10 100 1000

tim
e[

m
s]

data size[KB]

OnePort RMI
Sun’s implementation of RMI

Figure 8. Comparison of the round trip time between
OnePort RMI and Sun’s implementation of RMI when
DES Channel is used.

OnePort RMI can be utilized by any RMI applications.
In this stage, though OnePort RMI has all necessary

functions to handle multiple sockets on one port, it is not
fully compatible with RMI specifications. For example,
OnePort RMI lacks a distributed garbage collector or con-
figuration properties. They will be implemented in future
work.

References

[1]Lange, D.B. and Oshima, M.:Programming and De-
ploying Java Mobile Agents with Aglets, Addison
Wesley (1998).

[2]Tarau, P.: Inference and Computation Mobility with
Jinni, The Logic Programming Paradigm: a 25 Year
Perspective(Apt, K., Marek, V. and Truszczynski, M.,
eds.), Springer, pp.33-48 (1999).

[3]Satoh, I.: MobileSpaces: A Framework for Building
Adaptive Distributed Applications using a Hierarchi-

 100

 1000

 10000

 100000

 1 10 100 1000

tim
e[

m
s]

data size[KB]

OnePort RMI
Sun’s implementation of RMI

Figure 9. Comparison of the round trip time between
OnePort RMI and Sun’s implementation of RMI when
SSL Channel is used.

cal Mobile Agent System,Proceedings of IEEE Inter-
national Conference on Distributed Computing Sys-
tems, IEEE Press, pp.161-168 (2000).

[4]White, J.E.: Telescript Technology: The Founda-
tion for the Electronic Marketplace, General Magic
(1994). http://www.genmagic.com/WhitePapers.

[5]Karjoth, G., Lange, D.B. and Oshima., M.: A Security
Model for Aglets,IEEE Internet Computing, Vol.01,
No.4, pp.68-77 (1997).

[6]Farmer, W., Guttman, J. and Swarup, V.: Security for
Mobile Agents: Issues and Requirements,Proc. 19th
Nat’l Information Systems Security Conf. (NISSC 96),
pp.591-597 (1996).

[7]Tardo, J. and Valente, L.: Mobile Agent Security and
Telescript,Compcon ’96. ’Technologies for the In-
formation Superhighway’ Digest of Papers, pp.58-63
(1996).

[8]Sun Microsystems: Java Remote
Method Invocation, Web page (1997).
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmi-
title.html

[9]Winer, D.: XML-RPC Specification,
http://xmlrcp.com/spec (1998).

[10]Motomura, S., Kawamura, T. and Sugahara, K.:
Logic-Based Mobile Agent Framework with Concept
of Field, IPSJ Journal, Vol.47, No.4 (2006).

[11]Motomura, S., Kawamura, T. and Sugahara, K.: A
Logic-Based Mobile Agent Framework for WEB Ap-
plications,Proceedings of the 2nd International Con-
ference on Web Information Systems and Technolo-
gies, pp.121-126 (2006). Setubal, Portugal.

