
Persistency for Java-based Mobile Agent Systems
Shinichi Motomura

Information Media Center
Tottori University

4-101, Koyama-Minami
Tottori, JAPAN

Email: motomura@tottori-u.ac.jp

Takao Kawamura, Kazunori Sugahara
Faculty of Engineering

Tottori University
4-101, Koyama-Minami

Tottori, JAPAN
Email: {kawamura,sugahara}@ike.tottori-u.ac.jp

Abstract—In this paper, we present mobile agent systems
supporting persistency. In order to develop the mobile agent
systems, a mobile agent framework has to have functions
to support persistence of agents and persistence of an agent
runtime environment. Our developed Java-based mobile agent
framework named Maglog is taken up an example of a mobile
agent framework. Maglog consists of three basic components,
which are agents, agent servers and fields. Agent server and
fields are corresponding to an agent runtime environment. The
effectiveness of persistency is confirmed through descriptions of
two mobile agent systems: a distributed e-Learning system and
a scheduling arrangement system.

I. INTRODUCTION

Recently computing systems have been usually composed
of computers connected by a network, and that is called a
distributed system. Mobile agent technology is an important
issue to construct distributed systems. An advantage of mobile
agent technology is that overall system performance can be
improved because mobile agents are moved from heavily-
loaded to lightly-loaded computers. Moreover, mobile agent
technology can improve performance by exploiting parallelism
without the usual intricacies related to parallel programming.
For example, it is searching for information in the Web. By
using several copies of a mobile agent that move from site to
site, improving of performance compared to using just a single
program instance can be achieved. In addition to improve
performance, mobile agent technology improves flexibility.
Because a mobile agent moves between different computers, a
computer can acquire code that is not on the computer when
necessary. Therefore systems can be configured dynamically.

In order to develop mobile agent systems, a mobile agent
framework is usually needed. A mobile agent framework
consists of programming language, libraries and an agent
runtime environment (hereafter referred to as ARE).

In a mobile agent system, a number of autonomous agents
cooperate mutually and achieves given tasks. These agents
are spread on some computers and migrate among these by
computer networks. However, a number of agents concentrate
on one computer according to the circumstances. For execution
of these agents on one computer at same time, a large amount
of resources such as mass memory capacity and a fast CPU
are required. Consequently, under the limited resource circum-
stances, some agents on the computer should be swapped out
to second storage such as a hard disk drive.

In order to realize swapping out agents, a mobile agent
framework has to support persistence of agents. Many mobile
agent frameworks have been studied, and several mobile agent
frameworks, such as Aglets[1] and MobileSpaces[2], support
persistence of agents. However, in those mobile agent frame-
works, when an agent executes a program which describes
the behavior of the agent, the agent can suspend but can not
resume from the stopped point. Because these frameworks
support only weak mobility, they cannot save execution states.
In order to save execution states, a mobile agent framework
must support strong mobility, which involves the transparent
migration of an agent’s execution state as well as its program
and data. The persistence of agents that we require is described
as follows.

• Suspend
When an agent suspends, the agent and its suspended
state are written in hard disks.

• Resume
When the agent resumes, the agent restarts from the
stopped point.

In general, it is necessary to consider suspending systems.
Because a system must suspend processing when a power
failure occurs or the operating system is patched up. Systems,
such as the Web system, do not need time for processing
in many cases, and so it is not much necessary to con-
sider suspending systems. However, it is often that an agent
needs comparatively long time for processing in mobile agent
systems. Therefore, it is important to consider suspending
systems. If a system which is developed by a mobile agent
framework tries to suspend, not only agents but also an ARE
has to support persistency. However, there have been no mobile
agent frameworks which support persistence of an ARE.

Accordingly, we have examined that persistence of agents
and an ARE has been introduced into a mobile agent frame-
work which is implemented on the Java platform. Maglog[3]
which is our proposed mobile agent framework is took up
as an example of a strong mobility supported mobile agent
framework. It is based on Prolog and is implemented by
extending PrologCafé[4], which is a Prolog-to-Java source-
to-source translator system.

In this paper, the design and implementation of persistency
in Maglog are explained. Moreover, the usages of persistency

The Third International Conference on Internet and Web Applications and Services

978-0-7695-3163-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ICIW.2008.72

470

create

activate deactive

unblockblock

serializedeserialize

Running

Blocked

Ready

Serialized

destroy

Fig. 1. Agent’s life cycle.

in two distributed applications which are developed by Maglog
are described.

II. DESIGN

A mobile agent framework consists of agents and an ARE
in general. Agents and an ARE consist of Java objects in
mobile agent frameworks, which are implemented on the Java
platform. An agent is an autonomous program and a thread
on an ARE. The characteristic of an ARE is to provide the
following functions for agents:

1) Management agents, such as creation and destruction,
2) Communication with other agents,
3) Migration to another computer in a network,
4) Accessing an operation system’s functions, such as read-

ing/writing files.
The remaining of this section will explain each of how to
realize persistence of agents and how to realize persistence of
an ARE.

A. Persistence of Agent

1) Suspending/Resuming Timing
Figure 1 shows an agent’s life cycle while an agent is
destroyed after the agent is created. To begin with, an
agent is created, that is, the objects of the agent are
created. In this stage, the agent does not have a thread,
so that the agent cannot execute procedures. The state of
the agent is Ready. Next, in order to execute procedures
which the agent has, a thread is assigned to the objects
of the agent, and so the agent becomes Running. If the
agent waits a message from other agents, the thread stops,
and so the agent becomes Blocked. When the blocked
agent receives the message, the thread runs again, and so
the agent becomes Running again. If an agent suspends,
the objects of the agent are serialized then are saved in
files. When the agent resumes, the files are loaded, then
the objects are deserialized. Agents run autonomously, so
that agents can suspend when only agents are Running.
There are the following situations when agents try to
suspend.

a) An agent executes a procedure to suspend the agent.
b) An agent receives an offer of which other agents

request to suspend the agent.
c) An agent receives an order of which an agent server

requests to suspend the agent.
If an agent receives a suspending order from an agent
server when the agent is Blocked, the agent becomes
Running again then suspends. After the agent resumes,
the agent is Blocked again.
On the other hand, an agent is resumed by an agent server
in the following situations.
a) A user or another agent requests to resume the agent.
b) An agent server decides to resume the agent. For

example, if an agent server suspends agents which are
under low load, the agent server will resume the agents
later.

2) Required Mechanisms
Agents consist of Java objects. In order to realize persis-
tence of agents, Java objects are serialized. The general
contract for serializing Java objects is specified in the Java
Object Serialization Specification[5]. Object Serialization
is a mechanism built into the core Java libraries for
writing a graph of objects into a stream of data. However,
Object Serialization is not enough. If no custom Object
Serialization is used, objects of an agent may not be
deserialized on a host where the agent was not created.
Because the class descriptions of the objects may not be
in the host. Therefore, Object Serialization is customized
with dynamic class loaders. A dynamic class loader
contains bytecodes of Java classes of an agent and loads
the Java classes if necessary. Details of the custom Object
Serialization and the dynamic class loader are described
in another paper[6].

3) Steps of Suspending/Resuming
Figure 2 shows an overview of persistency mechanisms
which is implemented in an ARE. AgentController man-
ages agent’s life cycle in Fig. 1. When an agent executes
a procedure to suspend, the agent calls a function in
the ARE on which it is running, the following steps are
performed.
Step1. AgentController receives the call then dispatches

the agent to AgentSerializer, which implements
the custom Object Serialization.

Step2. AgentController stops the thread of the agent.
Step3. AgentSerializer retrieves the dynamic class loader

object from the agent. The dynamic class loader
object is serialized then is written in a file.

Step4. AgentSerializer serializes objects of the agent then
writes in a file.

Step5. In order to be able to resume, AgentController
knows the suspended agent’s information, such as
an agent’s identifier and about above files.

When an ARE resumes an agent, the following steps are
performed.
Step1. AgentController gets the dynamic class loader

471

Agent

Dynamic
ClassLoader

AgentSerializer/AgentDeserializer

Input/Output Components

File I/O Network I/O

Agent

ARE

AgentController

Dynamic
ClassLoader

StateAgentID Location

Runningxxxx

Persistedyyyy ------

AgentManagementTable

Fig. 2. An overview of agent’s persistency mechanisms.

object which is deserialized by AgentDeserializer.
Step2. AgentController gets objects of the agent which

are deserialized by AgentDeserializer with the
dynamic class loader object.

Step3. AgentController runs a thread of the agent.

B. Persistence of ARE

An ARE is suspended when a user or an agent requests
to suspend. Although an ARE also consists of Java objects, a
whole of it cannot be serialized. For example, I/O components
in Fig. 2 to provide network communication and accessing files
cannot be serialized. AgentSerializer and AgentDeserializer
are not necessary to be serialized. AgentManagementTable in
AgentController and the other some components have to be
serialized. When an agent server is suspended, the following
steps are performed.
Step1. AgentController gives a suspending order to all agents

then waits for until the all agents complete suspending.
Step2. The ARE serializes components which have to be

serialized then writes them in files.
Step3. The ARE shuts down.
When a user wants to run an ARE again, the ARE is resumed.
The resuming processes are performed as follows.
Step1. A user starts up the ARE with the parameter to resume.
Step2. The ARE reads the files then deserializes the compo-

nents.

Network

Agent

Field

Agent Server

Host

Fig. 3. Overview of a mobile agent system built using Maglog.

Step3. The ARE resumes, then AgentController resumes all
suspended agents.

III. IMPLEMENTATION

We have implemented persistence of agents and AREs in
our mobile agent framework named Maglog.

A. Overview of Maglog

Maglog is a mobile agent framework based on Prolog and is
implemented on the Java platform. Figure 3 shows an overview
of a mobile agent system built by Maglog. Maglog consists of
three basic components, which are agents, agent servers and
fields. An agent server and fields provide functions of as an
ARE.

1) Agent
An agent has the following functions:
a) Execution of a program that describes the behavior of

the agent,
b) Execution of procedures stored in a field where the

agent is currently located,
c) Communication with other agents through a field,
d) Creation of agents and fields,
e) Migration to another host in a network.
An agent has Prolog interpreter because the agent re-
sumes from its stopped point. If an agent is running on
JVM directly without Prolog interpreter, when the agent
cannot resume from the stopped point. Because Java API
does not provide methods to access program counter and
stack in order to access a thread’s execution state. In
contrast, Maglog has the WAM[7] as Prolog interpreter
which is an abstract machine tailored to Prolog.

2) Agent Server
An agent server is a runtime environment that provides
required functions for agents. For example, an agent
server provides a migration function. When an agent
migrates from host-A to host-B, the agent server on host-
A suspends the agent’s execution and transports the agent
to host-B. After that, the agent server on host-B resumes
execution of the agent. An agent server also manages

472

Fig. 4. A UML diagram which is an overview of classes of Maglog

Fig. 5. A screen-shot of the user interface program when a user tries to
suspend an agent.

fields and provides functions that enable an agent to
utilize them.

3) Field
A field is an object managed by an agent server to
hold Prolog clauses. An agent communicates with other
agents indirectly through fields. An agent can communi-
cate with other agents not only asynchronously but also
synchronously.

B. Persistence of Agent

Figure 4 shows a UML diagram which is an overview
of classes of Maglog. ClassLoader and CodeLoader are cor-
responded to DynamicClassLoader. AgentScheduler is cor-
responded to AgentController. AgentServerRemote provides
network functions which are using Java RMI and XML-RPC.

An agent can suspend by executing the predicate, which
name is suspend. When an agent executes suspend predicate,
objects of the agent are dispatched to AgentSerializer via
AgentServer. AgentSerializer writes serialized ClassLoader
object and serialized CodeLoader objects in a file, which name
is generated using the agent’s identifier. The file is called
SuspendedClassLoaderFile. Then AgentSerializer writes seri-
alized Agent object in a file, which name is generated using
the agent’s identifier. The file is called SuspendedAgentFile.

Fig. 6. A screen-shot of the user interface program when a user tries to
resume an agent.

Finally, AgentScheduler stops the thread of the agent.
A user can suspend an agent and can resume the agent by

a user interface program for manipulation of agent servers.
Figure 5 shows a screen-shot of the user interface program
when a user tries to suspend an agent. If the thread of the agent
waits or sleeps, the thread is woken up by AgentScheduler
using the Java notify method, then objects of the agent are
serialized.

Figure 6 shows a screen-shot of the user interface program
when a user tries to resume an agent. The user chooses the Sus-
pendedAgentFile. AgentDeserializer reads the file then reads
the SuspendedClassLoaderFile. AgentDeserializer deserializes
objects of the agent using above read files then dispatches
deserialized objects to AgentScheduler. The thread of the agent
is started by AgentScheduler.

C. Persistence of Agent Server and Field

A user can suspend an agent server by the user interface
program and can resume the agent server with a command-
line option, which is --resume. When a user tries to suspend
an agent server, the user clicks the SUSPEND Agent-Server
button in Fig. 5. First, AgentScheduler serializes objects of
all agents by AgentSerializer. Secondly, objects of Field and
objects of Property are serialized by AgentServerSerializer
then are written in a file. The file is called SuspendedA-
gentServerFile. Finally, the agent server shuts down. When
a user starts the agent server again with the command-line
option, AgentServerDeserializer reads the file then deserializes
the objects of Field and objects of Property. AgentScheduler
deserializes objects of all serialized agents by AgentDeserial-
izer, then threads of the agents are started.

IV. EXPERIMENTS

This section presents experimental results. Table I shows
the experimental conditions. In one experiment, we examine
the elapsed time and size of the generated files when an
agent is suspended. Subsequently, we examine the elapsed
time when the agent resumes. The agent’s class file size

473

is 1.2KB. Table II shows the elapsed times of suspending
and resuming. Table III shows SuspendedAgentFile size and
SuspendedClassLoaderFile size.

In the other experiment, we examine the elapsed time of
suspending and SuspendedAgentServerFile size when an agent
server is suspended. The 100 agents are running on the agent
server. Subsequently, we examine the elapsed time when the
agent server resumes. The agent’s class file size is 1.2KB.
Table IV shows the elapsed times of suspending and resuming.
The SuspendedAgentServerFile size is 69KB.

TABLE I
THE EXPERIMENTAL CONDITIONS.

CPU Intel Xeon 3GHz
Memory 1GB

OS TurboLinux 10 Desktop
JRE 1.4.2

TABLE II
THE ELAPSED TIME OF SUSPENDING AN AGENT AND RESUMING THE

AGENT.

Suspending time Resuming time
280 msec 154 msec

The agent’s class file size is 1.2KB.

TABLE III
THE SUSPENDEDAGENTFILE SIZE AND THE

SUSPENDEDCLASSLOADERFILE SIZE.

SuspendedAgentFile SuspendedClassLoaderFile
66.8 KB 2.2 KB

The agent’s class file size is 1.2KB.

TABLE IV
THE ELAPSED TIME OF SUSPENDING AN AGENT SERVER AND RESUMING

THE AGENT SERVER.

Suspending time Resuming time
36,175 msec 10,426 msec

Each agent’s class file size is 1.2KB.

V. APPLICATION

We have developed two distributed applications using Ma-
glog. In these applications, the performance is improved using
persistence of agents. Additionally, persistence of an agent
server is used to suspend a whole of the systems. In this
section, we describe circumstantially how persistency is used
in these applications.

A. Distributed e-Learning system

Figure 7 illustrates the overview of our distributed e-
Learning system[8], [9]. This e-Learning system has two
distinguishing features. Firstly, it is based on P2P architecture
for scalability and robustness. Secondly, each exercise in the
system is not only data but an agent so that it can mark
user’s answers, tell the correct answers, and show some

Network

I want to try

an exercise

of history!

User A

English

User B

Physics

History

Computer

User C

Migration of Exercise Agent

Searching Message

1

2

3

Computer

Computer

Fig. 7. Overview of the distributed e-Learning system.

extra information without human instruction. Maglog plays
an important role to realize the both features.

While a user uses this e-Learning system, his/her computer
is a part of the system. Namely, it receives some number
of agents in them from another computer when it joins the
system and has responsibility to send appropriate exercises
to requesting computers. When the system begins, one initial
computer has all agents in the system. When another computer
joins the system, it is received some number of agents from the
initial computer. The agents are distributed amon all computers
in the system according as computers join the system or leave
the system.

In this system, one exercise is corresponding to one agent.
When there is a lot of exercise, many agents exist. These
agents are spread on computers which are joined in the system.
However, if few computers join the system, a number of agents
concentrate on one computer. As a result, a large amount of
resources on the computer is consumed. As the solution, the
agents which are not requested from users are swapped out to
a hard disk.

When a computer joins the system, it is received some
agents from another computer. When a lot of agents which
are swapped out to a hard disk try to migrate, its resuming
consumes a large amount of resources and time. To improve a
performance, Maglog supports that agents can be transferred
without resuming.

We examined comparison of agent’s migration time between
with resuming and without resuming. One agent of which file
size was 332 KB migrated between two PCs 100 times, and
the average times were examined. The average time of with
resuming is 1,750 msec. The average time of without resuming
is 590 msec. Migration of an agent without resuming is about
three times speed of with resuming.

B. Meeting scheduling system

Our meeting scheduling system[10], [11] establishes and
arranges meeting schedule without human negotiations. Once
a convener convenes a meeting through the system, an agent

474

Network

Data transfer

Agent migration

User Management Agent

Scheduling Agent

Query Agent

Invitee 1 Invitee 2

ComputerComputer

Inviter

Computer Scheduling Server

Invitee 3

Fig. 8. Overview of the meeting scheduling system.

moves around the members of the meeting and negotiates with
them automatically.

Figure 8 illustrates the overview of the meeting scheduling
system. As shown in Fig. 8, there is a scheduling server
which runs always as long as the proposed system provides the
meeting scheduling service. A user management agent which
stands on the scheduling server manages user information
that include login name, password, IP address of the user’s
computer, and online/offline status. Login name and password
are static while IP address and online/offline status are updated
dynamically when a user logins to the system. A user can
use any computer on the network because his login name is
tied up with the IP address of his computer dynamically. A
scheduling agent corresponding to a meeting creates query
agents for each participant of the meeting. Each query agent
asks one participant’s schedule concurrently. The scheduling
agent does the rest of the work for meeting scheduling.

In this system, when all participants’ computer stops during
a meeting scheduling, all scheduling data disappear. Such
situation may occur to take time for a scheduling, for example,
a blackout occurs. As the solution, this system uses persistence
of agents and persistence of an agent server. When all par-
ticipants’ computer tries to stop, firstly all agents migrate to
the scheduling server. Secondly, all agents on the scheduling
server suspend, then the agent server on the scheduling server
suspends.

VI. CONCLUSION

We have implemented persistence of agents, agent servers
and fields in Maglog for the following two purposes. One is for
suspending agents. The other is for suspending a system which
is developed by using Maglog. The first purpose is used to
improve performance in our e-Learning system. In our meeting
scheduling system, the second purpose is used to suspend a
whole of the system.

In order to realize persistence of agents, Maglog supports
customized Object Serialization and the dynamic class loading

mechanism. Agent servers do not consist of only serialized
components, and so agent server’s persistency steps which
serialized components are serialized and an agent server shuts
down are defined.

Maglog supports that suspending agents can be transferred
without resuming, however the agents have restrictions to
resume on a migrated computer. For example, if a suspending
agent which was in a field is transferred to another computer
without resuming, the suspending agent cannot resume on the
computer. Because the field is not on the transferred computer.
As the solution, it will be added in the future that a condition
of a suspending agent is updated.

REFERENCES

[1] D. B. Lange and M. Oshima, Programming and Deploying Java Mobile
Agents with Aglets. Addison Wesley, 1998.

[2] I. Satoh, “Mobilespaces: A framework for building adaptive distributed
applications using a hierarchical mobile agent system,” in Proc. IEEE
International Conference on Distributed Computing Systems. IEEE
Press, April 2000, pp. 161–168.

[3] S. Motomura, T. Kawamura, and K. Sugahara, “Logic-based mobile
agent framework with a concept of “field”,” IPSJ Journal, vol. 47, no. 4,
pp. 1230–1238, 4 2006.

[4] M. Banbara and N. Tamura, “Translating a linear logic programming
language into Java,” in Proc. ICLP’99 Workshop on Parallelism and
Implementation Technology for (Constraint) Logic Programming Lan-
guages, M.Carro, I.Dutra et al., Eds., December 1999, pp. 19–39.

[5] Sun Microsystems, “The JavaTM Object Serialization Specification,”
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/.

[6] S. Motomura, T. Kawamura, and K. Sugahara, “Combination of xml-rpc
and mobile agent technologies,” in Proceedings of the IASTED Interna-
tional Conference Parallel and Distributed Computing and Systems, 11
2006, pp. 552–557, dallas, Texas, USA.

[7] H. Aı̈t-Kaci, “Warren’s Abstract Machine A Tutorial Reconstruction,”
2 1999.

[8] T. Kawamura and K. Sugahara, “A mobile agent-based p2p e-learning
system,” IPSJ Journal, vol. 46, no. 1, pp. 222–225, 1 2005.

[9] T. Kawamura, S. Kinoshita, S. Motomura, and K. Sugahara, “Backup
and recovery mechanism for a distributed e-learning system,” in Pro-
ceedings of the IASTED International Conference Parallel and Dis-
tributed Computing and Systems, 11 2006, pp. 546–551, dallas, Texas,
USA.

[10] S. Motomura, K. Kagemoto, T. Kawamura, and K. Sugahara, “Meeting
arrangement system based on mobile agent technologies,” IPSJ Journal,
vol. 46, no. 12, pp. 3123–3126, 12 2005.

[11] T. Kawamura, S. Motomura, K. Kagemoto, and K. Sugahara, “Meeting
arrangement system based on mobile agent technology,” in Proceedings
of the 2nd International Conference on Web Information Systems and
Technologies, 4 2006, pp. 117–120, setubal, Portugal.

475

