
NAT Traversal Method for
Multi-Agent-based Meeting Scheduling System

Yusuke Hamada and Shinichi Motomura
Graduate School of Engineering

Tottori University
4–101, Koyama-Minami

Tottori, JAPAN
Email: s032044@ike.tottori-u.ac.jp, motomura@tottori-u.ac.jp

Takao Kawamura and Kazunori Sugahara
Faculty of Engineering

Tottori University
4–101, Koyama-Minami

Tottori, JAPAN
Email: {kawamura, sugahara}@ike.tottori-u.ac.jp

Abstract—We previously proposed a meeting scheduling system
based on mobile agent technology. The users of our system do not
need to input all of their schedules unlike the existing groupwares.
When a user intends to call a meeting, he only inputs information
about the meeting. On behalf of the inviter, mobile agents move
around each invited user’s computer to ask whether he can join
the meeting and negotiate with him if necessary. In this paper,
we propose a NAT traversal method for a meeting scheduling
system based on mobile agent technology. In our former system,
the users inside a NAT network cannot use the system because
mobile agent cannot migrate from outside the NAT network to
inside NAT network. For this reason, our proposed system does
not work with some network including a NAT router, such as a
home network and an office network. To solve this problem, we
implemented a new migration method for mobile agents.

I. INTRODUCTION

The necessity of face-to-face meeting has not decreased at
all, even though interactive media such as telephone, facsimile,
and email have diffused widely. In general, to organize a
meeting is time-consuming routine task.

Some sort of groupware would assist us to organize a
meeting. The term groupware refers to software applications,
such as Lotus Notes/Domino [1], Microsoft Exchange Server
[2], and Cybozu Share360 [3], designed to allow a group
of users on a network to work simultaneously on a project.
Groupware may provide services for communicating, group
document development, scheduling, and tracking.

To utilize a groupware to organize a meeting, all schedule
of participants must be managed by the groupware server,
therefore all possible participants are requested always to input
their schedules into the server. In addition, although existing
groupwares have a function to find the date and time on which
all participants schedule is open, they don’t have a function to
negotiate with appropriate participants to open the schedule.

So, we proposed a meeting scheduling system based on
mobile agent technology to reduce time and effort on meeting
scheduling. Although there are many reports on the agent-
based meeting scheduling, especially algorithms or strategies
for negotiation among multi-agents [4], [5], [6], [7], [8], there
are few on developing an application system which includes
the following features:

1) Nobody is requested to input his all schedule into a
server before any meeting is intended to call.

2) An agent selects appropriate participants and asks them
to open the schedule.

In this paper, we present a NAT [9] traversal method for
multi-agent-based system. We aim to construct the proposed
system consists of number of user’s PCs (hereafter we refer to
such a computer as a node) across the Internet, however, com-
munications over a NAT are generally restricted. Therefore, we
cannot construct the proposed system consists of nodes, both
behind and outside the NAT. For this reason, our proposed
system does not work with some networks including a NAT
router, such as a home network and an office network. To
solve this problem, we implemented a new migration method
for mobile agents.

This paper is organized in 5 sections. The design of the
proposed system is described in Section 2. The problem and a
solution of our system described in Section3. In Section 4, we
present discussion about the solution. In Section 5, we present
the result of experiments. Finally, in Section 6, we describe
some concluding remarks.

II. MEETING SCHEDULING SYSTEM

In this section the design of the proposed meeting schedul-
ing system is presented.

A. Main Concept

The important point in designing a meeting scheduling
system is that the means to be used for collecting schedule
data and for negotiating. Email and web are popular means
to do those things, i.e., requests from the system to users are
sent via email, on the other hand, replies from users to the
system are sent directly via email or via URL informed by the
requesting email. However, we consider that those means are
not enough because email is often disregarded. We therefore
design the proposed system as a multi-agent system, i.e., we
make agents migrate to user’s PC for collecting schedule data
and for negotiating. A migrated agent opens a window on
user’s PC for collecting schedule data and for negotiating
and it doesn’t disappear until the user answers. However, it
is necessary to leave email and web as alternative means for

The Third International Conference on Internet and Web Applications and Services

978-0-7695-3163-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ICIW.2008.73

223

the case that a user cannot login over a long period of time
when he is on a business trip etc.

Figure 1 illustrates the overview of the proposed system.
As shown in Fig. 1, there is a scheduling server which runs
always as long as the proposed system provides the meeting
scheduling service. A user management agent which stands on
the scheduling server manages user information that includes
login name, password, IP address of the user’s computer, and
online/offline status. Login name and password are static while
IP address and online/offline status are updated dynamically
when a user logins to the system. A user can use any computer
on the network because his login name is tied up with
the IP address of his computer dynamically. A scheduling
agent corresponding to a meeting creates query agents for
each participant of the meeting. Each query agent asks one
participant’s schedule concurrently. The scheduling agent does
the rest of the work for meeting scheduling.

Network

Computer

Inviter

Invitee 1 Invitee 2

Computer Computer

Scheduling Server

Invitee 3

Data transfer

Agent migration

User Management Agent

Scheduling Agent

Query Agent

Fig. 1. Overview of the meeting scheduling system.

B. Schedule a meeting

When a user of the proposed system intends to call a
meeting, he/her selects participants from registered users. In
addition, he/her provides the further information about the
meeting that consists of a timeframe during which the meeting
must be held, the duration of the meeting, and the subject
of the meeting. Then a scheduling agent corresponding to
the meeting is created on the user’s computer to arrange the
meeting. It migrates to the scheduling server immediately so
that the inviter can logout from the system before the meeting
is arranged. The IP address of the scheduling server is assumed
as known.

Then query agents for each participant of the meeting
are created. Each query agent obtains the IP address of a
participant’s computer from the user management agent, and
then migrates to the participant’s computer to ask his/her
schedule concurrently.

If a user doesn’t login to the system when a query agent
intends to migrate to his/her computer, the query agent waits a
certain period of time on the scheduling server. After timeout,

the query agent sends an email to the user informing him/her
of a particular URL and waits his/her connection as a web
server. The user can tell his/her schedule to the query agent
through the URL.

After all the participants’ schedules are collected success-
fully, the scheduling agent arranges the meeting and migrates
to the participant’s computer to negotiate with the participants
if necessary.

At last the scheduling agent notifies the result of the meeting
arrangement to both the inviter and the invitees.

C. Implementation

An implementation of the proposed system has been devel-
oped on Java platform by using our mobile agent framework
named Maglog [10], [11], [12]. The user interface of the
proposed system has been implemented as a Web application
using Ajax technology.

Fig. 2 shows a sample screen-shot of query agent mi-
grates to a participant’s computer to ask his/her schedule by
opening a schedule window. Through this window, one can
input his schedule; select a range of hour-cells by holding
down the left mouse button and dragging the mouse over
the cells; right-click on the cells; choose whether he will be
free, tentative, or busy in the pop-up selection box.
Only an inviter of a meeting can choose the fourth option
preferable. Note that a blank cell means that the user is
free on that time therefore there is no need to select the free
option ordinarily. One should select it only when he intends
to overwrite other options.

Fig. 2. Window for an online user to input schedule data.

III. NAT TRAVERSAL

A. Problem

In the proposed system, agents migrate among nodes via the
scheduling server. When the proposed system is constructed
with a scheduling server having global IP address and nodes
behind the NAT or nodes outside the NAT, it will work
correctly. However, if the proposed system is constructed
with a scheduling server having global IP address, nodes

224

behind the NAT and nodes outside the NAT, it will not work.
Because scheduling agents and query agents fail to migrate
from scheduling server to a node behind the NAT. Therefore,
we cannot construct the proposed system consists of nodes,
both behind and outside the NAT.

A NAT is widely used in the Internet to share global IP
addresses among nodes on private networks. A NAT is suitable
for client/server application since a client node behind the NAT
can establish outbound connections to a server node which
have a globally unique IP address, but the NAT is not suitable
P2P application, which needs end-to-end communication, be-
cause nodes behind the NAT typically cannot receive inbound
connections.

When an agent intends to migrate from one node to other
node, the system establishes a TCP/IP connection between the
two nodes. However, when the proposed system is constructed
with the nodes behind the NAT and the nodes outside the NAT,
the nodes outside the NAT cannot establish a connection to
the nodes behind the NAT. Therefore, a mobile agent failed
to migrate from a node outside the NAT network to a node
behind the NAT network. In contrast, the node inside a NAT
network establishes a connection to the node outside a NAT
network, and receives a response.

B. Solution

One solution to solve this problem is to set static routing
rules to all related NAT routers. If each inside NAT network
has only one node, it will be relatively easy. In general,
however there are many nodes inside NAT network and those
nodes must use identical port number. It is too difficult to
maintain those static routing rules by hand. In such cases,
UPnP (Universal Plug and Play)[13] is considered helpful.
However, it is not realistic to require all NAT routers in the
system to have UPnP feature. In addition to that, UPnP will
not work with the network such as a NAT router connected to
other NAT router.

We construct a new migration method by repeating follow-
ing steps periodically, as shown in Fig. 3:

1) A node inside a NAT network establishes a connection
to a node outside a NAT network, and requests to find
mobile agents if mobile agents want to migrate to.

2) If the node outside a NAT network found mobile agents
waiting to migrate to the node, they migrate to the node
inside a NAT network through a response; otherwise the
node inside a NAT sends a response for no mobile agent
waiting to migrate to the node exists.

Fig. 3. New migration method for mobile agents.

A new migration method implemented on an agent frame-
work used in our system. And mobile agents in our system
reformed using a new migration method if it needs.

IV. DISCUSSION

Our solution has two restrictions. First, if this migration
method runs with short intervals then the system load becomes
intolerable, therefore this migration method must run with
long intervals. Second, users inside a NAT network can only
communicate with well-known nodes outside a NAT network.
However, those restrictions are acceptable in our proposed
meeting scheduling system. In our meeting scheduling system,
all agents have long period to organize a meeting and don’t
need to migrate to user’s node right away. In addition to
that, users inside a NAT network only communicate with the
scheduling server in our system.

We survey several relational works in this area.
1) Relaying

Some nodes connected with a globally reachable server
can communicate with each other by relaying through
the server. This is the most reliable technique, however,
it consumes the server’s processing power and band-
width.

2) Connection reversal
Connection reversal is a straightforward but limited tech-
nique. The basic concept of connection reversal is that a
node behind a NAT establishes a reverse connection to
a node outside a NAT by an intermediate server when a
node outside a NAT communicates to a node behind a
NAT.

3) UDP/TCP hole punching
UDP hole punching techniques are proposed for UDP
communication over NAT. The basic concept of UDP
hole punching is that each node behind a NAT connects
a server to make the NAT translation state and registers
endpoint information of the node to the server, and then
the node connects with each other using the endpoint
entry on the server. STUN [14] presents the detailed
protocol for UDP hole punching. For TCP communi-
cations, some TCP hole punching techniques are also
proposed in [15], [16].

Our proposed solution is similar to relaying techniques.
To compare with connection reversal, UDP hole punching
techniques and TCP hole punching techniques, our proposed
solution is simple if target system can accept the restrictions
mentioned above.

V. EXPERIMENTS

A. Confirmation of implementation

To investigate the implementation of the new migration
method work correctly, we examined our system worked
correctly in following environment:

• Two PCs belong to a private network with a subnet range
192.168.2.0/24.

• Two PCs belong to a global network with a subnet range
160.15.35.0/24, including a scheduling server.

225

• A NAT router for connecting two networks.
The network topology for experiments is shown in Fig. 4.

Fig. 4. Network topology for experiments.

To test our system, we use our system in practice with
the environment shown as Fig. 4, and we confirmed that our
system works correctly in the above environment.

B. CPU load

We examine the average of CPU load when several nodes
inside a NAT network execute almost simultaneously our new
migration method to the same node when no agents exist. The
experimental environment consists of PCs with Intel Pentium4
3.0GHz processor. They are connected through 1000Base-T
Ethernet and are running on Turbolinux 10 operating system
whose kernel version is 2.6.0. The version of the Java language
runtime environment is 1.5.0, and its heap size is 512MB.

 0

 2

 4

 6

 8

 10

 12

 0.1 1 10 100

A
v

er
ag

e
o

f
cp

u
 l

o
ad

 (
%

)

Interval of execution (s)

1 node
2 nodes
3 nodes
4 nodes
5 nodes

Fig. 5. The change of the average of CPU load when intervals of method’s
execution increase.

The result is shown in Fig 5. If our new migration method
execute with long enough intervals, the average of CPU load
becomes almost zero even if the number of nodes increases.

VI. CONCLUSION

In this paper, we describe a NAT traversal problem on our
former system and implementation of a new migration method
for mobile agents to solve the problem. With the improvement

of our proposed system, we realize users either inside a NAT
network or outside the network can use our system. In other
words, users can use our system without consideration about
the NAT traversal problem. Therefore we can provide our
system for the network including a NAT router, such as a
home network and an office network.

To make the proposed system more practical, it is necessary
to consider the priorities of participants, i.e., the key person
of a meeting must join it; on the contrary, a meeting may be
opened without persons with low priority. In addition to that,
when the proposed system is used in a large organization, it
is necessary to increase the number of schedulable meetings.
That will be achieved by a distributed approach in future work.

REFERENCES

[1] IBM, “Lotus notes/domino,” 2005,
http://www-306.ibm.com/software/lotus/.

[2] Microsoft, “Microsoft exchange server,” 2005,
http://www.microsoft.com/exchange/default.mspx.

[3] Cybozu, “Share360,” 2005, http://cybozu.com/.
[4] S. Sen and E. H. Durfee, “On the design of an adaptive meeting

scheduler,” in Proceedings of the Tenth IEEE Conference on Artificial
Intelligence for Applications, March 1994, pp. 40–46.

[5] N. R. Jennings and A. J. Jackson, “Agent-based meeting scheduling: A
design and implementation,” IEE Electronics Letters, vol. 31, no. 5, pp.
350–352, 1995.

[6] H. H. Bui, S. Venkatesh, and D. Kireonska, “Learning other agents’
preferences in multiagent negotiation,” in Proceedings of the Thirteenth
National Conference on Artificial Intelligence, vol. 2, August 1996, pp.
114–119.

[7] L. Garrido and K. Sycara, “Multi-agent meeting scheduling: Prelimi-
nary experimental results,” in Proceedings of the Second International
Conference on Multi-Agent Systems. AAAI Press, December 1996, pp.
95–102.

[8] P. J. Modi and M. Veloso, “Multiagent meeting scheduling with
rescheduling,” in Proceedings of the Fifth Workshop on Distributed
Constraint Reasoning, 2004.

[9] P. Srisuresh and K. Egevang, “Traditional IP Network Address Translator
(Traditional NAT),” IETF RFC 3022, 1 2001.

[10] S. Motomura, T. Kawamura, and K. Sugahara, “Logic-based mobile
agent framework with a concept of “field”,” IPSJ Journal, vol. 47, no. 4,
pp. 1230–1238, 4 2006.

[11] T. Kawamura, S. Motomura, and K. Sugahara, “Implementation of a
logic-based multi agent framework on java environment,” in Proceedings
of International Conference on Integration of Knowledge Intensive
Multi-Agent Systems, H. Hexmoor, Ed., 4 2005, pp. 486–491, waltham,
Massachusetts, USA.

[12] S. Motomura, T. Kawamura, and K. Sugahara, “A logic-based mobile
agent framework for web applications,” in Proceedings of the 2nd
International Conference on Web Information Systems and Technologies,
4 2006, pp. 121–126, setubal, Portugal.

[13] UPnP Forum, “Welcome to the upnpTM forum!” http://www.upnp.org/.
[14] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN - Simple

Traversal of User Datagram Protocol (UDP) Through Network Address
Translators (NATs),” IETF RFC 3489, 3 2003.

[15] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communication across
network address translators,” in Proceedings of the 2005 USENIX Annual
Technical Conference, 4 2005, pp. 179–192, anaheim, California, USA.

[16] S. Guha, Y. Takeda, and P. Francis, “NUTSS: A SIP based approach to
UDP and TCP connectivity,” in Proceedings of Special Interest Group
on Data Communications (SIGCOMM) Workshops, Portland, Oregon,
USA, 8 2004, pp. 43–48.

226

