
EXERCISE MANAGEMENT SCHEME
FOR A DISTRIBUTED E-LEARNING SYSTEM

Takao KAWAMURA, Kazuo KURAMOCHI, and Kazunori SUGAHARA
Department of Information and Knowledge Engineering

Tottori University
4–101, Koyama-Minami

Tottori, JAPAN
kawamura@ike.tottori-u.ac.jp

ABSTRACT
We have proposed and implemented a distributed asyn-
chronous Web-based training (WBT) system. In order to
improve the scalability and robustness of this system, all
exercises and functions, such as scores user’s answers are
realized on mobile agents. These agents are distributed to
computers, and they can be constructed with a P2P net-
work that modified Content-Addressable Network (CAN).
In this paper, we present the exercise management scheme
for the proposed WBT system. In a WBT system based
on client/server model, management of exercises is sim-
ply achieved by manipulating data, since all contents are
concentrated in one server computer. In the proposed sys-
tem, however, we need to pay attention to distributed agents
for management of exercises. In order to achieve opera-
tion of exercise management, i.e., adding, deleting and up-
dating exercises on the distributed WBT system, we use
steps with considering multi-agent based distributed envi-
ronment: specifying an agent which provides an exercise
and searching its node as pre-operation, and sending an
agent to the expected node and notifying other cooperating
agents as post-operation.

KEY WORDS
Distributed Agents, P2P, Mobile Agent, e-Learning

1 Introduction

Nowadays, e-Learning systems, especially asynchronous
Web-based training systems (hereafter we abbreviate as
WBT) are very popular. A WBT allows the learner to
complete the WBT on his own time and schedule, with-
out live interaction with the instructor. Although a large
number of studies have been made on asynchronous WBT
[1, 2, 3], all of them are based on the client/server model.
The client/server systems generally lack scalability and ro-
bustness. In recent years, P2P research has grown exponen-
tially. Although the current P2P systems are well-known
for its file sharing ability, and the consequent legal prob-
lems, P2P systems are gradually proving themselves to be
a very promising area of research. Because they have po-
tential for offering a decentralized, self-sustained, scalable,
fault tolerant and symmetric network of computers pro-

viding an effective balancing of storage and bandwidth re-
sources.

We have proposed and implemented a distributed e-
Learning system based on P2P architecture [4, 5] using
Maglog that is a Prolog-based framework for building mo-
bile multi-agent systems we have also developed [6, 7].
The proposed e-Learning system has two distinguishing
features. Firstly, it is based on P2P architecture and ev-
ery user’s computer plays the role of a client and a server.
Namely, while a user uses the proposed e-Learning system,
his/her computer (hereafter we refer to such a computer as
a node) is a part of the system. It receives some number
of contents from another node when it joins the system and
has responsibility to send appropriate contents to the re-
questing nodes. Secondly, each exercise in the system is
not only data but also an agent so that it has functions, such
as scoring user’s answers, telling the correct answers, and
showing some related information without human instruc-
tion.

In this paper, we present an exercise management
scheme which provides three operations to add, to delete
and to update exercises for the proposed e-Learning sys-
tem. In ordinal WBT systems based on the client/server
model, all exercises are stored in a server just as data.
Therefore, adding, deleting and updating exercises are
achieved by manipulating data on the server directly. In the
proposed system, on the other hand, exercises are provided
by agents which move around any computer of the system.
The following pre-operation and post-operation steps are
therefore needed when an exercise manager intends to add,
delete, or update an exercise:

Pre-Operation Step This step is needed when the in-
tended operation is deleting or updating an exercise.
First of all, the agent is specified in which the target
exercise is contained. Next, the node is searched on
which the agent is running. In addition, when the op-
eration is updating an exercise, the target agent mi-
grates to the exercise manager’s node.

Post-Operation Step When the operation is adding or up-
dating an exercise, the target agent migrates to appro-
priate node. In addition to that, since all functions of
the proposed e-Learning system are preformed in co-

590-059 460

debbie
PDCS

operation with multi-agents, it is needed to notify ap-
propriate agents about the operation, i.e., an exercise
agent is added, deleted, or updated.

This paper is organized in 5 sections. The proposed
e-Learning system is described in Section 2. We describe
the design overview of the proposed exercise management
scheme in Section 3 and the implementation of the scheme
in Section 4, respectively. Finally, some concluding re-
marks are drawn in Section 5.

2 Proposed e-Learning System

2.1 Overview

All exercises in the proposed system are classified into cat-
egories, such as “English/Grammar”, “Math/Statistic”, and
“History/Rome”, etc. A user can obtain exercises one after
another through specifying categories of the required exer-
cises.

While a user uses the proposed e-Learning system,
his/her computer is a part of the system. Namely, it re-
ceives some number of categories and exercises from an-
other node when it joins the system and has responsibility
to send appropriate exercises to requesting nodes. The im-
portant point to note is that the categories a node has are
independent of the categories in which the node’s user are
interested.

2.2 P2P Network

When the proposed system bootstraps, one initial node has
all categories in the system. When another node joins the
system, it is received certain number of categories from the
initial node. The categories are distributed among all nodes
in the system according as nodes join the system or leave
the system.

We would like to emphasize that in existing P2P-
based file sharing systems, such as Napster [8], Gnutella
[9], and Freenet [10], each shared file is owned by a par-
ticular node. Accordingly, files are originally distributed
among all nodes. On the other hand, the categories in
the proposed system are originally concentrated. Conse-
quently, when a new node joins the system, not only loca-
tion information of a category but the category itself must
be handed to the new node. Considering that, the P2P net-
work of the proposed system can be constructed as a CAN
[11].

The CAN has a virtual coordinate space that is used to
store (key, value) pairs. To store a pair (K1, V1), key K1 is
deterministically mapped onto a point P in the coordinate
space using a uniform hash function. The corresponding
(key, value) pair is then stored in the node that owns the
zone within which the point P lies. In the proposed system,
we let each category be a key and let a set of exercises
belonging to the category be the corresponding value.

Figure 1. P2P network.

Our P2P network is constructed with 2-dimensional
coordinate space [0,1] × [0,1] to store exercise categories,
as shown in Figure 1. The figure shows the situation that
node C has just joined the system as the third node. Before
node C joins, node A and node B shared the whole coordi-
nate space half and half. At that moment, node A managed
“Math/Geometry”, “Math/Statistics”, and “History/Rome”
categories and node B managed “English/Grammar”, “En-
glish/Reader and “History/Japan” categories, respectively.
When node C joins the system, it is mapped on a certain co-
ordinate space according to a random number and takes on
corresponding categories from another node. For example,
in the case of Figure 1, node C takes on the “History/Japan”
category from node B and exercises of the category move
to node C.

2.3 Components

Generally, in addition to service to show an exercise, a
WBT server provides services to score user’s answers, to
tell the correct answers, and to show some related informa-
tion about the exercise. Therefore, for the proposed system
that can be considered as a distributed WBT system, it is
not enough that only exercises are distributed among all
nodes. Functions to provide the above services also must
be distributed among all nodes. We adopt mobile agent
technology to achieve this goal. Namely, an exercise is not
only data but also an agent so that it has functions, such
as scoring user’s answers, telling the correct answers, and
showing some related information about the exercise.

In addition, mobile agent technology is applied to re-
alize the migration of categories, that is, each category is

461

also an agent in the proposed system.
There are following agents and user interface pro-

grams on each node.

Node Agent Each node has one node agent. It manages
the zone information of a CAN and forwards mes-
sages to the category agents in the node.

Exercise Agent Each exercise agent has a question and
functions to score user’s answers, tell the correct an-
swers, and show some related information about the
exercise. An exercise agent records study logs when-
ever it is tried by a student.

Category Agent Each category agent stands for a unit of a
particular subject. It manages exercise agents in itself
and sends them to the requesting node.

Interface Agent There is one interface agent for each user
interface, such as a student interface and an exercise
manager interface on each node. It plays a role of
interfaces between the interface program and other
agents, and between agents and applications.

User Agent Each user has its own user agent. A user
agent manages its user information that includes login
name, password, IP address of the user’s computer,
online/offline status. It also has study logs if the cor-
responding user is a student. Similarly, it also has a
list of created exercises if the corresponding user is an
exercise manager.

Group Agent A group agent exists for grouping user
agents as a category agent exists for grouping exercise
agents. Currently, users are grouped by the first letter
of their login name, so that there are 26 group agents
corresponding to one letter in the English alphabet.

Student Interface One student interface is on each node
of which a user logs in as a student. It is a user inter-
face program for studying.

Exercise Manager Interface One exercise manager inter-
face is on each node of which a user logs in as an
exercise manager. It is a user interface program for
management of exercises.

3 Exercise Management Scheme

3.1 Overview

The proposed exercise management scheme provides three
operations, i.e., adding, deleting, and updating exercises,
to exercise managers that are users authorized to manage
exercises in the proposed e-Learning system. Note: Updat-
ing an exercise-A means creating new exercise-B based on
exercise-A instead of modifying exercise-A directly.

Since exercises are represented as mobile agents, the
pre-operation and post-operation steps described in Section
1 are needed.

An exercise manager can use those functions through
an exercise manager interface.

3.2 Pre-Operation: Specify an Exercise Agent and Its
Node

This step is needed when the intended operation is deleting
or updating an exercise.

Each agent in the proposed system is identified by
unique agent-ID. However, it is not convenient for an ex-
ercise manager to specify an exercise by agent-ID. For that
reason, we would like to manage a list of the agent-ID and
the properties of an exercise, and we’d like to use the list
for specifying target exercise agent by properties. If the
list is stored and maintained as a local data, the list cannot
be used in the other nodes. Therefore, a user agent cor-
responding to an exercise manager maintains a list of all
exercises created by the exercise manager.

User agents are registered to group agents by the first
letter of exercise managers’ user-ID. Group agents are also
distributed to nodes and arranged in a virtual coordinate
space of the P2P network by the letter. When an exercise
manager logs in the e-Learning system using his/her user-
ID and password, a group agent authenticates him/her, then
a user agent corresponds to the manager migrates to the
manager’s node. The user agent maintains a list of all ex-
ercises created by the exercise manager. Each record of the
list consists of the agent-ID, and the properties of an exer-
cise such as created date, category name, exercise title, and
short description. An exercise manager can specify and se-
lect target exercise agent for deleting or updating from this
list through the exercise manager interface.

In order to respond to a request for exercise manage-
ment, a request message of an exercise manager have to
be delivered to a category agent, because a category agent
manages exercise agents. However, no one controls the
whole proposed e-Learning system, agents on each node
do not know which node the category agent are arranged
in. Then, we use a virtual coordinate space of our P2P net-
work to search a node to which a category agent belongs.
When a node of a category is being searched, the following
steps are performed:

1. A node of an exercise manager is assigned to node N .

2. A point of a category in the virtual coordinate space is
calculated using a uniform hash function and a name
of the category, and then the point of category is as-
signed to point P .

3. If a zone of node N includes the point P , then exit.

4. A node of neighbors which has closest zone to a point
P is assigned to node N . Where, two nodes are neigh-
bors if and only if their zones overlap the same side.

5. Go to step 3.

462

Figure 2. Example of searching a node of “Math/Geome-
try” category.

In Figure 2, an example of searching a node of “Math
/ Geometry” by an exercise manager in node F is shown.
First, node F is assigned to node N . A point of “Math
/ Geometry” is not included in the zone of node F, then
node H is assigned to node N since node H is one of the
neighbors of node F’s which has zone closest to the point
P . In the same way, node G is assigned to node N , and then
node D is assigned to node N . Node D has zone including
P , then the node of “Math / Geometry” is specified as node
D.

After the above steps, a request of exercise manage-
ment is transfered to the category agent of the target cate-
gory in the specified node.

3.3 Pre-Operation: Obtaining an Exercise Agent for
Updating

This step is needed when the intended operation is updating
an exercise.

A category agent that receives an updating request
through the searching procedure described in Section 3.2, it
sends a request to the target exercise agent specified by an
agent-ID to migrate to the exercise manager’s node. The
exercise agent that receives the request duplicates itself.
Then, the cloned agent migrates to the exercise manager’s
node and presents the contents of itself to the exercise man-
ager interface.

3.4 Operation: Adding, Updating and Deleting an Ex-
ercise Agent

In the process of adding a new exercise, an exercise man-
ager creates materials for an exercise from scratch. In the
process of updating an exercise, on the other hand, an exer-
cise manager receives exercise contents from the migrated
exercise agent, and then creates new materials based on the
received contents.

Once materials for an exercise are prepared, the re-
maining steps are same in both adding and updating.
Firstly, new exercise agent is created using the materials.
Secondly, the created exercise agent is registered in the sys-
tem, as described in the following section.

The process of deleting a specified exercise is also
requested through an exercise manager interface.

3.5 Post-Operation: Registering or Unregistering an
Exercise Agent

The process of registering an exercise agent is needed when
the intended operation is adding or updating an exercise.

This process is also accomplished by using the
searching procedure. After searching a node of the target
category by the steps described in Section 3.2, the newly
created exercise agent migrates to specified node of the cat-
egory.

In the proposed system, exercise agents are managed
by category agents and lists of created exercises are main-
tained by user agents. Therefore, to inform adding or delet-
ing exercise to the proposed e-Learning system is achieved
by the following procedures:

1. The created exercise agent is registered in its category
agent when the operation is adding or updating. In
contrast, the exercise agent is unregistered from its
category agent when the operation is deleting. Reg-
istered exercise agents are provided for students im-
mediately, while unregistered exercise agents possibly
remain for a while. An unregistered exercise agent
disappears completely from the proposed e-Learning
system when the last clone of it returns to its category
agent.

2. The record corresponding to the created exercise is
added to the list maintained by the user agent when
the operation is adding or updating. In contrast, the
record corresponding to the deleted exercise is marked
as ‘deleted’ on the list of the user agent.

4 Implementation of Exercise Management
Scheme

4.1 Overview

Figure 3 illustrates the implementation overview of the pro-
posed e-Learning system that runs on Java platform. Each
node runs an agent server written in Java and all agents in
a node are threads in the agent server process. Both two of
interface applications, i.e., student interface and exercise
manager interface are also written in Java.

4.2 Exercise Agent

Functions of an agent are written in Prolog, compiled to
Java classes, and then combined into a jar file. The jar file

463

Figure 3. Implementation overview of the proposed e-
Learning system.

also contains the following two types of data:

1. XML document which express questions and com-
ments with display layout, and values of correct an-
swers.

2. Image data associated with the exercise.

An example of XML document in contents of an exer-
cise is shown in Listing 1. In Listing 1, there are <head>
element and <body> element as children of <exercise>
element. The <head> element has attribute information of
the exercise and the <body> element includes main con-
tents of the exercise. The <body> element can include
<ansfld> element, which shows an answer form of a ques-
tion, element, which is for image data, and some
other elements as posterities of <body> element.

Listing 1. An example of the XML document in contens of
an exercise.

<?xml version=”1.0” encoding=”UTF−8”?>
<exercise>

<head>
<category>Math/Geometry</category>
<title>Area 4</title><difficulty>2</difficulty>
<summary>Area of a Rectangle: 1</summary>

</head>
<body>

<p></p>
<p>What is the area of the above rectangle?</p>
<p>

<ansfld class=”text”>
<ans>

<val type=”text”>4</val>
<disp>4</disp>

</ans>
<cmt>The rectangle has ...</cmt>

</ansfld>
</p>

</body>
</exercise>

Figure 4. Sample screenshot: Viewing a list of exercises.

XML document and image data are transformed into
HTML format for viewing with a web browser using XSL
Transforms[12]. This transformation may be applied each
time when the presentation format is needed. However, we
make the presentation format be included in the jar file to
reduce waiting time for viewing the content.

4.3 Exercise Manager Interface

An exercise manager interface provides all operations of
exercise management scheme for users. To have the exer-
cise manager interface run under multi-platform environ-
ment and to make it easy to understand the usage, we have
implemented it as an application of Eclipse Rich Client
Platform [13], a framework for building rich client appli-
cation. The Eclipse Rich Client Platform is useful not only
for client/server systems but also for distributed systems,
such as the proposed e-Learning system.

Figures 4, 5, and 6 show sample screenshots of the ex-
ercise manager interface. Figure 4 illustrates the main win-
dow of the exercise manager interface. All exercises cre-
ated by an exercises manager are listed. Functions adding,
deleting, and updating exercises or viewing logs of exer-
cises are executed through selecting an item of menu bar.
Figure 5 illustrates the editing window through which an
exercise manager create a new exercise or update an exist-
ing exercise. Figure 6 illustrates the log window through
which an exercise manager can view the study logs of an
exercise agent.

An exercise manager interface and agents communi-
cate each other via XML-RPC [14]. Requests from an exer-
cise manager interface are sent to an interface agent which
delegates requests to other agents.

5 Conclusion

Since existing asynchronous WBT systems are based on
the client/server model, they have problems of scalability
and robustness. The proposed e-Learning system solves
these problems in decentralized manner through both P2P
technology and mobile agent technology.

464

Figure 5. Sample screenshot: Creating a new exercise.

Figure 6. Sample screenshot: Viewing study logs of an
exercise agent.

In this paper, we describe exercise management
scheme for the proposed e-Learning system. The pro-
posed management scheme provides three operations, i.e.,
adding, deleting and updating exercises for authorized
users. To provide these operations as functions of the
proposed distributed e-Learning system, we use following
methods: a method to specify a target agent and to let the
agent migrate from a searched appropriate node to a user’s
node, as pre-operation, and a method to send newly created
agent to a proper node and to notify adding or deleting an
exercise to cooperating agent, as post-operation.

We implement an exercise manager interface as an
application of Eclipse Rich Client Platform. An exercise
manager interface provides adding, deleting and updating
exercises for authorized users. An exercise manager inter-
face communicates with an agent server via XML-RPC.

In the proposed e-Learning system, the data stored in
the inside of an agent is initialized when the e-Learning
system is restarted. Handing over these runtime data to the
rebooted system is left for future work.

References

[1] Nishita, T. and et el: Development of a Web Based
Training system and Courseware for Advanced Com-

puter Graphics Courses Enhanced by Interactive Java
Applets (2002).

[2] Homma, H. and Aoki, Y.: Creation of WBT Server
on Digital Signal Processing, Proceedings of 4th In-
ternational Conference on Information Technology
Based Higher Education and Training (2003). Mar-
rakech, Morocco.

[3] Helic, D., Krottmaier, H., Maurer, H. and Scerbakov,
N.: Enabling Project-Based Learning in WBT Sys-
tems, International Journal on E-Learning, Vol. 4,
No. 4, pp. 445–461 (2005).

[4] Kawamura, T. and Sugahara, K.: A Mobile Agent-
Based P2P e-Learning System, IPSJ Journal, Vol. 46,
No. 1, pp. 222–225 (2005).

[5] Motomura, S., Nakatani, R., Kawamura, T. and Suga-
hara, K.: Distributed e-Learning System Using P2P
Technology, Proceedings of the 2nd International
Conference on Web Information Systems and Tech-
nologies, pp. 250–255 (2006). Setubal, Portugal.

[6] Motomura, S., Kawamura, T. and Sugahara, K.: Ma-
glog: A Mobile Agent Framework For Distributed
Models, Proceedings of the IASTED International
Conference on Parallel and Distributed Computing
and Systems, pp. 414–420 (2005). Phoenix, Arizona,
USA.

[7] Motomura, S., Kawamura, T. and Sugahara, K.:
Logic-Based Mobile Agent Framework with a Con-
cept of “Field”, IPSJ Journal, Vol. 47, No. 4, pp.
1230–1238 (2006).

[8] Napster: http://www.napster.com/ (1999).

[9] Gnutella: http://welcome.to/gnutella/ (2000).

[10] Clarke, I., Sandberg, O., Wiley, B. and Hong,
T. W.: Freenet: A Distributed Anonymous
Information Storage and Retrieval System,
http://freenetproject.org/papers/freenet.pdf (2000).

[11] Ratnasamy, S., Francis, P., Handley, M., Karp, R.
and Schenker, S.: A scalable content-addressable net-
work, Proceedings of the 2001 conference on appli-
cations, technologies, architectures, and protocols for
computer communications, ACM Press, pp. 161–172
(2001).

[12] Clark, J.: XSL Transformations (XSLT) Version 1.0,
http://www.w3.org/TR/xslt (1999).

[13] McAffer, J. and Lemieux, J.-M.: Eclipse Rich
Client Platform: Designing, Coding, and Packaging
JavaTMApplications, Addison-Wesley (2005).

[14] Winer, D.: XML-RPC Specification,
http://xmlrcp.com/spec (1998).

465

