
NEW IMPLEMENTATION OF RMI TO PROTECT INTEGRITY AND
CONFIDENTIALITY FOR MOBILE AGENTS

Shinichi Motomura
The Graduate School of Engineering, Tottori University
4–101, Koyama-Minami, Tottori 680–8552, Japan

Email: motomura@tottori-u.ac.jp

Takao Kawamura, Kazunori Sugahara
Department of Information and Knowledge Engineering Tottori University

4–101, Koyama-Minami, Tottori 680–8552, Japan
Email: {kawamura,sugahara}@ike.tottori-u.ac.jp

Keywords: RMI, Security, Java, Mobile agent.

Abstract: A new implementation of RMI named OnePort RMI is proposed in this paper. OnePort RMI consists of new
RMI runtime, classes which are implemented interfaces by RMI specification, and MultiChannelSocketFac-
tory. Using OnePort RMI, when an object on a client invokes methods of remote objects on a server, the
client can use sockets of different types to connect one destination port at the same time, and the server can
accept incoming call from the sockets on only the port. In order to protect integrity and confidentiality of our
mobile agent framework named Maglog, OnePort RMI is introduced into Maglog. In consequence, each agent
can select a socket depending on importance of data and programs which are contained in their agents. We
emphasize that the proposed OnePort RMI is not only for mobile agent frameworks such as our Maglog but
also for any RMI applications.

1 INTRODUCTION

In the construction of network application systems,
distributed model is widely adopted. In particu-
lar, mobile agent technology is attracting attention
as a key technology for developing distributed sys-
tems. Several mobile agent frameworks have been
proposed, such as Aglets(Lange and Oshima, 1998),
Jinni(Tarau, 1999), Mobilespaces(Satoh, 2000), and
Telescript(White, 1994). Measures against security
threats for mobile agent frameworks have been stud-
ied(Karjoth et al., 1997; Farmer et al., 1996; J.Tardo
and Valente, 1996). The security measures are classi-
fied by following aspects:

Authentication is a process which identifies agents.
Authentication is necessary for the below aspects.

Authorization is a process to determine what types
of grants an agent has. A computer must be pro-
tected from malicious agents, and an agent must
be protected from malicious computers and mali-
cious agents.

Integrity means the property that agents have not
been altered or destroyed in an unauthorized man-
ner. Agents may be tampered with while agents

are on computers and migrates to other comput-
ers.

Confidentiality means the property that agents are
not made available or disclosed in an unauthorized
manner. Data and programs which are contained
in agents must be accessible only to agents which
are authorized to have access.

In this paper, we concentrate on integrity and confi-
dentiality when agents migrate across the Network.
Generally, Secure channels, such as SSL (Secure
Sockets Layer) and IPSec (Security Architecture for
Internet Protocol), between computers via encryption
of network packets are used to protect integrity and
confidentiality. If a secure channel is used in mobile
agent frameworks, all network packets are encrypted
while agents migrate. However an encryption process
uses many resources and causes performance degra-
dation. Therefore, selective encryptions of agents are
preferable, i.e., considering costs of encrypting, some
agents have to be encrypted and others do not. In mo-
bile agent frameworks, every agent should be able to
select a communication channel, i.e., secure type or
not secure type. Moreover, each agents should select
different secure channel so that encryption strength

364

can be selected according to the importance of agents.
We consider that the above manner for using se-

cure channels is introduced into mobile agent frame-
works which are implemented in a Java environment.
Because, most mobile agent frameworks, such as
the above mentioned Aglets, Jinni and Mobilespaces,
have been implemented in a Java environment. And
these mobile agents frameworks use Java Remote
Method Invocation (hereafter referred to as RMI)(Sun
Microsystems, 1997) or XML-RPC(Winer, 1998) as
transport mechanisms. In mobile agent frameworks
based on RMI, when several channels are used at the
same time, the same number of sockets are required,
as the result, the same number of ports are required.
In most networks, a firewall is used to prevent unau-
thorized access to a network, therefore the number of
open ports are limited to be minimum. Therefore, it is
necessary that one port can be associated with multi-
ple sockets. However, Sun’s implementation of RMI
cannot realize the requirement mentioned above. For
this reason, we propose new implementation of RMI
named OnePort RMI that multiple sockets can be as-
sociated with one port. On the other hand, XML-RPC
uses HTTP as the transport protocol. Therefore, we
build an HTTP server and an HTTP client with Mul-
tiChannelSocketFactory which is used in the inside
of OnePort RMI so that the HTTP server can handle
multiple sockets on one port.

To confirm their behaviors, we implement
OnePort RMI and our HTTP client/server on our
mobile agent framework Maglog(Motomura et al.,
2006b; Motomura et al., 2006a). However, we em-
phasize that the proposed OnePort RMI is not only
for mobile agent frameworks such as our Maglog but
also for any RMI applications.

2 WHY WE CANNOT USE SUN’S
IMPLEMENTATION OF RMI?

In this chapter, the behavior of a client communicat-
ing with a server using RMI is described. And, it is
explained that Sun’s implementation of RMI cannot
realize the behavior of RMI which we require.

2.1 Behavior of RMI

RMI enables programmers to create distributed Java
technology-based on Java technology-based applica-
tions, in which the methods of remote Java objects can
be invoked from other JVM on different hosts. When
an object on a client tries to invoke a method of a re-
mote object on a server, the object communicates with

RMI runtime

Stub object

RMI runtime

Skeleton

object

Client’s

object

Server’s

object

RMI registry

Network

Client Server

Figure 1: A model of relation among an RMI runtime, a
stub object, and a skeleton object when a object on a client
invokes a method of a remote objects on a server.

the stub object on client’s JVM which is correspond-
ing with the remote object. A stub object is client’s
proxy for remote objects, and its roles are to hide
network connections and serialization of parameters.
A stub object has an RMIClientSocketFactory object
which creates a socket to communicate with a server.
A skeleton object which is corresponding with a re-
mote object is on server’s JVM, and the skeleton ob-
ject invokes methods of the remote object in effect.
Roles of skeleton objects are to hide network connec-
tions and deserialization of parameters. Stub objects
and skeleton objects are managed by an RMI runtime
on each of the JVMs, moreover the objects are called
automatically by each the RMI runtime if necessary.
An RMI runtime has an RMIServerSocketFactory ob-
ject which creates a server socket to wait for incom-
ing calls from clients. RMIClientSocketFactory and
RMIServerSocketFactory are provided by java’s core
library. Figure 1 shows a model of relations among an
RMI runtime, a stub object and a skeleton object.

A server executes the following steps to export a
remote object so that an object on a client can invoke
methods of the remote object on the the server.

1. An RMIClientSocketFactory object and an
RMIServerSocketFactory object are created.

2. A stub object and a skeleton object are generated
using above objects and the port number which is
used to wait for incoming calls from clients.

3. The stub object and the skeleton object are regis-
tered in server’s RMI runtime.

4. The stub object is registered in server’s RMI reg-
istry which allows remote objects on the server to
register themselves as available to objects on the
client.

NEW IMPLEMENTATION OF RMI TO PROTECT INTEGRITY AND CONFIDENTIALITY FOR MOBILE AGENTS

365

When an object on a client tries to invoke a
method of a remote object on a server, the object gets
the stub object which is corresponding with the re-
mote object from server’s RMI registry. After that,
the object invokes the method for the stub object.
By client’s RMI runtime, a socket is created by the
RMIClientSocketFactory object which is contained
in the stub object. Next, client’s RMI runtime com-
municates with server’s RMI runtime by the socket.
Furthermore, server’s RMI runtime creates a server
socket by the RMIServerSocketFactory object which
is registered in server’s RMI runtime, after that the
server socket communicates with the socket.

2.2 The Reason that we Cannot Use
Sun’s Implementation of RMI

The behaviors of RMI which we require are that a
client can use sockets of different types at the same
time and a server can accept incoming call from the
sockets on only one port. In order to realize the be-
haviors, the following mechanisms are necessary.

1. An RMIServerSocketFactory object must be able
to create multiple server sockets which are corre-
sponding with client’s sockets.

2. A client must be able to select sockets from differ-
ent types which are created by an RMIClientSock-
etFactory object.

In order to implement first mechanism, behaviors of
RMIServerSocketFactory and RMIClientSocketFac-
tory are customized. And, it is necessary to solve ei-
ther of the following two problems to realize the sec-
ond mechanism.

1. An RMIClientSocketFactory object is created by
a server, after that when a client tries to use the
object, the object is managed by the RMI runtime
on the client. Therefore, an object on the client
cannot invoke methods of the RMIClientSocket-
Factory object. Namely, the client cannot create
sockets of different types by the RMIClientSock-
etFactory object.

2. A server exports using a pair of an RMI-
ClientSocketFactory object, an RMIServerSock-
etFactory object and a port. If a server exports
using pairs of multiple RMIClientSocketFactory
objects and the same port, a client selects requir-
ing RMIClientSocketFactory object.

It is impossible to solve the first problem since RMI
Specification does not define the manner to access
an RMI runtime. Moreover, Sun’s implementation of
RMI does not provide the manner to solve the second
problem.

3 ONEPORT RMI

In chapter 2, we mentioned about the reason why
a client cannot use sockets of different types at the
same time by using Sun’s implementation of RMI.
Therefore, we develop new implementation of RMI
named OnePort RMI which consists of new RMI run-
time, classes which are implemented interfaces de-
fined by RMI specification, and MultiChannelSock-
etFactory which are described the following section.
First, MultiChannelSocketFactory is described, after
that propsed RMI runtime is described.

3.1 MultiChannel Socket Factory

In a system which uses Sun’s implementation of RMI,
when a server receives a request from a client, the
server creates an object of ServerSocket class which
is contained in java’s core library by an RMIServer-
SocketFactory object. Next, the ServerSocket object
creates a server socket, after that the server socket
waits for incoming calls. In order to create multiple
server sockets which are corresponding with connect-
ing sockets, steps of above execution must be changed
as follows:
1. A server socket which is created by an object of

ServerSocket class receives a kind of sockets from
a client.

2. The other server socket which is corresponding
with the kind of sockets is created, after that the
server socket communicates with client’s socket.

For the above, on the client side, a socket which is
created by an RMIClientSocketFactory object is nec-
essary to send the kind of sockets, so that MultiChan-
nelClientSocketFactory class which is implemented
RMIClientSocketFactory interface is developed. On
the server side, in order to receive the kind of sock-
ets, MultiChannelServerSocketFactory class which
is implemented RMIServerSocketFactory interface is
developed. Furthermore, MultiChannelServerSocket
class is developed so that the server socket which
is corresponding with the kind of sockets is created.
Figure 2 shows a relation of above classes. The above
classes are defined as MultiChannelSocketFactory.

3.2 Proposed RMI Runtime

In order to export remote objects in which identi-
cal port number is associated with multiple RMI-
ClientSocketFactory, we develop new RMI runtime.
Our RMI runtime is based on an Object Request Bro-
ker (hereafter referred to as ORB) which we have de-
veloped. The main components of our ORB are de-
scribed as follows:

WEBIST 2007 - International Conference on Web Information Systems and Technologies

366

Figure 3: A UML sequence diagram of which a server exports a remote object using our RMI runtime.

MultiChannel

ClientSocket

Factory

RMI Runtime

Socket

MultiChannel

ServerSocke

tFacory

MultiChannel

Server

Socket

Server

Socket

Call
Create

Send:

a kind of socket

Dispatch

Create

Wait

Client Server

Figure 2: A relation of classes which are contained in Mul-
tiChannelSocketFactory.

ORBServer has a server role in our RMI runtime. It
accepts requests from server sockets.

ORBClient has a client role in our RMI runtime.
When an object on a client invokes methods of
a remote object on a server, ORBClient commu-
nicates with the server instead of the object.

ORBStubFactory generates a stub object, a skeleton
object, and a reference which are corresponding
with a remote object.

ORBDirectory provides the following two func-
tions. The first is that objects which are generated
by ORBStubFactory are registered. The second is
that the registered objects are searched.

In our ORB, the following steps are executed when
a server exports a remote object. First, ORBServer
receives an RMIServerSocketFactory object. Next,
ORBStubFactory generates a stub object using a pair
of an RMIClientSocketFactory and a port. Further-
more, ORBServer creates an unique identifier which
is corresponding with the stub object. Finally, ORB-
Server registers the identifier and the stub object in
ORBDirectory. In consequence, a stub object can be
generated using a pair of the other RMIClientSock-
etFactory object and the same port and be registered
in ORBDirectory. Namely, OnePort RMI can real-
ize that a server exports a remote object using pairs
of multiple RMIClientSocketFactory objects and the
same port. Figure 3 shows a UML sequence diagram
of which a server exports a remote object using our
RMI runtime. The UnicastRemoteObject class has
a static method named export for exporting a remote
object. The UnicastRemoteObject class is defined by
RMI Specification.

In practice, MultiChannelClientSocketFactory
class and MultiChannelServerSocketFactory class are
used instead of RMIClientSocketFactory class and
RMIServerSocketFactory class.

4 IMPLEMENTATION

OnePort RMI is implemented interfaces defined by
RMI specification, and it includes above RMI run-
time. Figure 4 shows an overview of their classes.

NEW IMPLEMENTATION OF RMI TO PROTECT INTEGRITY AND CONFIDENTIALITY FOR MOBILE AGENTS

367

- factory

 parent

 marshalizer

- server

ORBClient

 target

- location

- client

TargetLocation

RemoteRefImpl

ref
RemoteRef

 directory

 directory

Registry

RegistryImpl

Remote

RemoteObject

RemoteStub RemoteServer

RegistryImpl_Stub

ORBDirectory

ORBServerSlave

UnicastRemoteObject

ORBServer

ORBStubFactory
Marshalizer

DefaultMarshalizer

Figure 4: A UML diagram which is an overview of classes
of OnePort RMI.

4.1 Secure Channels

We develop the following two secure channels
into MultiChannelSocketFactory. One is named
DES Channel in which a socket is encrypted using
the Data Encryption Standard (hereafter referred to
as DES) which is a cryptographic algorithm. The
other is SSL Channel in which a socket is imple-
mented using SSL. SSL Channel has the following
security measures,therefore its security is stronger
than DES Channel. On the other hand, DES Channel
is not necessary to have a digital certification which
is needed by SSL Channel, therefore DES Channel
provides simple manner for utilizing.

Endpoint authentication Two computer’s identities
can be authenticated using asymmetric cryptogra-
phy such as Public Key Infrastructure.

Integrity checking Message transport includes a
message integrity check using a keyed message
authentication code.

Key exchange A symmetric cipher which is used for
encryption is exchanged between computers on
periodic basis.

DES Channel is realized by DESSocket class and
DESServerSocket class which extend Socket class

and ServerSocket class and implement DES encryp-
tion. SSL Channel is realized by SSLSocket class and
SSLServerSocket class which are provided by Java
Secure Socket Extension. The socket which is not en-
crypted is defined as RAW Channel.

4.2 Applying to Mobile Agent
Framework

We have proposed a mobile agent framework named
Maglog which is based on Prolog and is implemented
in a Java environment. In Maglog, the following pred-
icate is introduced so that each agent can select a
channel.

change channel(PrevChannel,NewChannel)

After an agent is executed the above predicate, the
agent uses NewChannel to migrate to other com-
puters. A kind of channels before changing is bound
to PrevChannel. The following three channels are
defined.

1. RAW: Above RAW Channel.

2. DES: Above DES Channel.

3. SSL: Above SSL Channel.

5 EXPERIMENTS

In this chapter, sample codes using OnePort RMI are
shown. Next, the experimental results for comparison
of execution time between OnePort RMI and Sun’s
implementation of RMI are shown.

5.1 Sample Code

Figure 5 shows a part of a sample code when a server
provides HelloImpl objects using DES Channel and
SSL Channel for clients. In this code, HelloImpl ob-
jects are created, then the objects are exported by
using DES Channel and using SSL Channel. After
that the objects are registered in server’s RMI reg-
istry with names which are “//server/HelloDES” and
“//server/HelloSSL”.

Figure 6 shows a part of a sample code when a
client invokes the HelloImpl objects on the server us-
ing DES Channel and SSL Channel. First, the client
takes stub objects from server’s RMI registry by in-
voking lookup method with the above names. Next,
the client invokes a method of the stub classes. Inci-
dentally, HelloImpl class implements Hello interface.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

368

Figure 5: HelloImpl objects are provided using
DES Channel and SSL Channel for clients.

Figure 6: A client invokes the HelloImpl objects using
DES Channel and SSL Channel.

5.2 Comparison of Round Trip Time
between OnePort RMI and Sun’s
Implementation of RMI

This section presents the experimental results for
comparison of the round trip time for a remote method
invocation between OnePort RMI and Sun’s imple-
mentation of RMI. In the experiments, two PCs were
connected via a 100Base-T network. Under each
implementation, the experiments are performed 100
times using three channels in the following condi-
tion. A client invokes a method of a remote object
on a server with an argument which is a byte array.
The data sizes of the argument are 1KB, 5KB, 10KB,
50KB, 100KB, 500KB, and 1000KB. The total times
are shown in Figs. 7, 8 and 9. The differences of
the round trip time between OnePort RMI and Sun’s
implementation of RMI is small at all channels.

 1

 10

 100

 1000

 10000

 1 10 100 1000

tim
e

[m
s]

data size[KB]

OnePort RMI
Sun’s implementament of RMI

Figure 7: Comparison of the round trip time between
OnePort RMI and Sun’s implementation of RMI when
RAW Channel is used.

 100

 1000

 10000

 100000

 1 10 100 1000

tim
e

[m
s]

data size[KB]

OnePort RM
Sun’s implementation of RMI

Figure 8: Comparison of the round trip time between
OnePort RMI and Sun’s implementation of RMI when
DES Channel is used.

6 CONCLUSION

We have developed new implementation of RMI
named OnePort RMI. OnePort RMI consists of new
RMI runtime, classes which are implemented RMI
specification, and MultiChannelSocketFactory. Us-
ing OnePort RMI, when an object on a client invokes
methods of remote objects on a server, the client can
use sockets of different types to connect one des-
tination port at the same time, and the server can
accept incoming calls from the sockets on only the
port. We have developed two secure channels such
as DES Channel and SSL Channel into MultiChan-
nelSocketFactory. When other secure channels are
needed, they can be added to MultiChannelSocket-
Factory easily.

Note that though we have confirmed the effective-
ness of OnePort RMI on our mobile agent framework

NEW IMPLEMENTATION OF RMI TO PROTECT INTEGRITY AND CONFIDENTIALITY FOR MOBILE AGENTS

369

 100

 1000

 10000

 100000

 1 10 100 1000

tim
e

[m
s]

data size[KB]

OnePort RMI
Sun’s implementation of RMI

Figure 9: Comparison of the round trip time between
OnePort RMI and Sun’s implementation of RMI when
SSL Channel is used.

Maglog, OnePort RMI can be utilized by any RMI
applications.

In this stage, though OnePort RMI has all neces-
sary functions to handle multiple sockets on one port,
it is not full compatible with RMI specifications. For
example, OnePort RMI lacks a distributed garbage
collector or configuration properties. They will be im-
plemented in future work.

REFERENCES

Farmer, W. M., Guttman, J. D., and Swarup, V. (1996). Se-
curity for mobile agents: Issues and requirements. In
Proc. 19th Nat’l Information Systems Security Conf.
(NISSC 96), pages 591–597.

J.Tardo and Valente, L. (1996). Mobile agent security and
telescript. In Compcon ’96. ’Technologies for the In-
formation Superhighway’ Digest of Papers, pages 58–
63.

Karjoth, G., Lange, D. B., and Oshima., M. (1997). A se-
curity model for aglets. IEEE Internet Computing,
01(4):68–77.

Lange, D. B. and Oshima, M. (1998). Programming and
Deploying Java Mobile Agents with Aglets. Addison
Wesley.

Motomura, S., Kawamura, T., and Sugahara, K. (2006a). A
logic-based mobile agent framework for web applica-
tions. In Proceedings of the 2nd International Confer-
ence on Web Information Systems and Technologies,
pages 121–126. Setubal, Portugal.

Motomura, S., Kawamura, T., and Sugahara, K. (2006b).
Logic-based mobile agent framework with concept of
field. IPSJ Journal, 47(4).

Satoh, I. (2000). Mobilespaces: A framework for building
adaptive distributed applications using a hierarchical

mobile agent system. In Proceedings of IEEE Interna-
tional Conference on Distributed Computing Systems,
pages 161–168. IEEE Press.

Sun Microsystems (1997). Java re-
mote method invocation. Web page.
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmi-
title.html.

Tarau, P. (1999). Inference and computation mobility with
jinni. In Apt, K., Marek, V., and Truszczynski, M.,
editors, The Logic Programming Paradigm: a 25 Year
Perspective, pages 33–48. Springer.

White, J. E. (1994). Telescript Technology: The Foundation
for the Electronic Marketplace. General Magic.
http://www.genmagic.com/WhitePapers.

Winer, D. (1998). Xml-rpc specification.
http://xmlrcp.com/spec.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

370

