
Multi-Agent-based Approach for
Meeting Scheduling System

Takao KAWAMURA, Yusuke HAMADA, and Kazunori SUGAHARA
Department of Information and Knowledge Engineering, Faculty of Engineering, Tottori University

4–101, Koyama-Minami, Tottori 680–8552, JAPAN
+81 857 31 5217

{kawamura, sugahara}@ike.tottori-u.ac.jp

Kengo KAGEMOTO and Shinichi MOTOMURA
Graduate School of Engineering, Tottori University
4–101, Koyama-Minami, Tottori 680–8552, JAPAN

+81 857 31 6100
motomura@tottori-u.ac.jp

Abstract—In this paper, a meeting scheduling system based
on mobile agent technology is proposed. The users of the sys-
tem do not need to input all of their schedules unlike the ex-
isting groupwares. When a user intends to call a meeting, he
only inputs information about the meeting. On behalf of the
inviter, mobile agents move around each invited user’s com-
puter to ask whether he can join the meeting and negotiate
with him if necessary. Therefore, the inviter’s work becomes
less compared with using the existing groupwares. We have
developed the system with our mobile agent framework on
Java platform and confirmed its effectiveness through experi-
ments.

1.INTRODUCTION

The necessity of face-to-face meeting has not decreased at all,
even though interactive media such as telephone, facsimile,
and email have diffused widely. In general, the following
steps are required to organize a meeting.

1. Specify who should join the meeting and a timeframe
during which the meeting must be held.

2. Send emails or phone all the participants a number of
times to collect their schedules.

3. Merge their schedules and fix the date and time of the
meeting.

4. Select appropriate participants, ask them to open the
schedule, and return to step 3 if there is no date and time
available, otherwise go to step 5.

5. Notify the arranged date and time of the meeting to all
the participants.

Those are time-consuming routine tasks, especially steps 3
and 4.

Some sort of groupware would assist us to organize a meet-
ing. The term groupware refers to software applications, such
as Lotus Notes/Domino [1], Microsoft Exchange Server [2],
and Cybozu Share360 [3], designed to allow a group of users
on a network to work simultaneously on a project. Group-
ware may provide services for communicating, group docu-
ment development, scheduling, and tracking.

To utilize a groupware to organize a meeting, all schedule
of participants must be managed by the groupware server,
therefore all possible participants are requested to input their
schedules into the server always. If anyone fails to maintain
his schedule on the server, the scheduling function of a group-
ware becomes useless. In addition, although existing group-
wares have a function to find the date and time on which all
participants schedule is open, they don’t have a function to
negotiate with appropriate participants to open the schedule.
That is to say, the above most difficult steps 3 and 4 are left
to people.

In this paper, a meeting scheduling system based on mo-
bile agent technology is proposed to reduce time and effort
on meeting scheduling. Although there are many reports on
the agent-based meeting scheduling, especially algorithms or
strategies for negotiation among multi-agents [4, 5, 6, 7, 8],
there are few on developing an application system which in-
cludes the following features:

1. Nobody is requested to input his all schedule into a
server before any meeting is intended to call.

2. An agent selects appropriate participants and asks them
to open the schedule.

This paper is organized in 5 sections. The design of the pro-
posed system and an implementation of the system on Java

791-4244-0945-4/07/$25.00 ©2007 IEEE

platform are described in Section 2 and 3, respectively. In
Section 4, we present the result of experiments. Finally, in
Section 5, we describe some concluding remarks.

2.MEETING SCHEDULING SYSTEM

In this section the design of the proposed meeting scheduling
system is presented.

Main Concept

It is the important point in designing a meeting scheduling
system that the means to be used for collecting schedule data
and for negotiating. Email and web are popular means to
do those things, i.e., requests from the system to users are
sent via email, on the other hand, replies from users to the
system are sent directly via email or via URL informed by
the requesting email. However, we consider those means are
not enough because email is often disregarded. We therefore
design the proposed system as a multi-agent system, i.e., we
make agents migrate to user’s PC for collecting schedule data
and for negotiating. A migrated agent opens a window on
user’s PC for collecting schedule data and for negotiating and
it doesn’t disappear until the user answers. However, it is
necessary to leave email and web as alternative means for the
case that a user cannot login over a long period of time when
on a business trip etc.

Figure 1 illustrates the overview of the proposed system. As
shown in Fig. 1, there is a scheduling server which runs al-
ways as long as the proposed system provides the meeting
scheduling service. A user management agent which stands
on the scheduling server manages user information that in-
clude login name, password, IP address of the user’s com-
puter, and online/offline status. Login name and password
are static while IP address and online/offline status are up-
dated dynamically when a user logins to the system. A user
can use any computer on the network because his login name
is tied up with the IP address of his computer dynamically.
A scheduling agent corresponding to a meeting creates query
agents for each participant of the meeting. Each query agent
asks one participant’s schedule concurrently. The scheduling
agent does the rest of the work for meeting scheduling.

Collecting schedule data

When a user of the proposed system intends to call a meeting,
he/her selects participants from registered users. In addition,
he/her provides the further information about the meeting that
consists of a timeframe during which the meeting must be
held, the duration of the meeting, and the subject of the meet-
ing. Then a scheduling agent corresponding to the meeting is
created on the user’s computer to arrange the meeting. It mi-
grates to the scheduling server immediately so that the inviter
can logout from the system before the meeting is arranged.
The IP address of the scheduling server is assumed as known.

Then query agents for each participant of the meeting are cre-
ated. Each query agent obtains the IP address of a partici-

Network

Computer

Inviter

Invitee 1 Invitee 2

Computer Computer

Scheduling Server

Invitee 3

Data transfer

Agent migration

User Management Agent

Scheduling Agent

Query Agent

Figure 1 - Overview of the meeting scheduling system.

pant’s computer from the user management agent, and then
migrates to the participant’s computer to ask his/her schedule
concurrently. Both the inviter and the invitees are requested
to classify each hour in the timeframe into three categories:
“free”, “tentative”, and “busy”. A query agent may ask a user
whether he can join a meeting only when the meeting will be
held across his/her tentative hours. In addition to the three
categories, an inviter of a meeting can select the category
named “preferable” in which he hopes the meeting will be
held.

If a user doesn’t login to the system when a query agent in-
tends to migrate to his/her computer, the query agent waits a
certain period of time on the scheduling server. After timeout,
the query agent sends an email to the user informing him/her
of a particular URL and waits his/her connection as a web
server. The user can tell his/her schedule to the query agent
through the URL.

Scheduling algorithm including negotiation

After all the participants’ schedules are collected success-
fully, the scheduling agent arranges the meeting by using the
following procedure:

1. Merge all the participants’ schedules and generate a list
which contains all the possible continuous hours up to
the meeting length. Hours classified as busy by one more
participants are excluded.

2. Order the list by the number of hours relating a negoti-
ation, by the number of persons relating a negotiation,
and by the inviter’s preference.

3. The procedure exits with the success status if no negoti-
ation is needed, i.e., the number of hours relating a ne-
gotiation of the top element of the list is zero.

4. Retrieve each element of the list and negotiate with the
related participants to open their schedules until a nego-

80

tiation succeeds or the list is empty. The procedure exits
with the success status when the former case occurs. The
latter case means that the return status of the procedure
is failure.

As an example, we examine how a scheduling agent negoti-
ates with participants when user A intends to hold a two hours
meeting with user B between July 5th and July 6th. We as-
sume that user A and user B inputted their schedules shown
in Table 1. A blank cell in Table 1 means that user A or user
B is free on that time.

Table 1 - Schedules of user A and user B between July 5 and
July 6.

July 5 July 6
user A user B user A user B

9 tentative tentative busy
10 tentative tentative busy
11 busy
12 tentative busy
13 tentative busy
14 busy busy
15 preferable busy busy
16 preferable busy busy

Table 1 shows that some negotiation is needed to hold a two
hours meeting between July 5th and July 6th. Table 2 shows
durations to be selected as candidates for negotiation in the
order of priority. A scheduling agent negotiates with user A
and/or user B to open the schedule in that order. Note that it
avoids useless negotiation. For example, If one of user A and
user B denies to open the schedule on the third duration in Ta-
ble 2, it does not ask the other user for opening the schedule
since the negotiation succeeds only if both two persons agree
to open the schedule. In addition, if a negotiation on the third
duration fails, it does not intend to negotiate on the fourth du-
ration in Table 2 since there is no chance that the negotiation
succeeds.

Table 2 - Possible durations of the meeting on July 5 sorted
in the order for negotiation.

Duration Number of Number of
related hours related persons

11–13 1 1
12–14 2 1
10–12 2 2
9–11 4 2

At last the scheduling agent notifies the result of the meeting
arrangement to both the inviter and the invitees.

3.IMPLEMENTATION

An implementation of the proposed system has been devel-
oped on Java platform by using our mobile agent framework

named Maglog[9, 10, 11] . The user interface of the pro-
posed system has been implemented as a Web application us-
ing Ajax technology.

As mentioned in Section 2, when one intends to call a meet-
ing, he needs to select participants and to provide the fur-
ther information about the meeting that consist of a time-
frame during which the meeting must be held, the dura-
tion of the meeting, and the subject of the meeting. Fig-
ure 2 shows a sample screen-shot of selecting participants
and inputting information about a meeting. One can se-
lect participants through moving leaves from the tree in
the Available Participants pane to the Selected
Participants pane. If a selected node is leaf then one
person corresponds to the node is added to the participants
list, otherwise persons correspond to descendant leaves of the
dropped node are added to the participants list at once. An
:off suffix on a leaf node indicates that the corresponding
person is in the offline status.

Figure 2 - Window for selecting participants and inputting
information about a meeting.

When the OK button is pressed, a scheduling agent is created
and migrates to the scheduling server immediately. Contin-
uously, query agents for each participant are created. each
query agent migrates to a participant’s computer to ask his/her
schedule by opening a schedule window as shown in Fig. 3.
Through this window, one can input his schedule; select a
range of hour-cells by holding down the left mouse button
and dragging the mouse over the cells; right-click on the cells;
choose whether he will be free, tentative, or busy in
the pop-up selection box. Only an inviter of a meeting can
choose the fourth option preferable. Note that a blank
cell means that the user is free on that time therefore there
is no need to select the free option ordinarily. One should
select it only when he intends to overwrite other options.

If a user doesn’t login to the system when a query agent in-
tends to migrate to his/her computer, the query agent sends

81

Figure 3 - Window for an online user to input schedule data.

an email to the user informing him/her of a particular URL as
shown in Fig. 4. As shown in Fig. 5, the user can tell his/her
schedule data to the query agent through the URL.

Figure 4 - Email sent to an offline user inviting him/her to a
meeting.

Figure 6 shows a window for negotiation. If a user which is
asked to open his/her schedule doesn’t login to the system,
an email is send to the user informing his/her of a particular
URL to negotiate as the case to input his/her schedule.

If a user doesn’t login to the system when a query agent in-
tends to migrate to his/her computer, the query agent sends
an email to the user informing him/her of a particular URL as
shown in Fig. 7. As shown in Fig. 8, the user can negotiate
with the query agent through the URL.

4.EXPERIMENTS

This section presents experimental results obtained from the
implementation of the proposed system described in the pre-
vious section.

The experimental environment consists of PCs with Intel

Figure 5 - Window for an offline user to input schedule data.

Figure 6 - Window for negotiation with an online user.

Figure 7 - Email sent to an offline user to ask him/her for
opening the schedule.

82

Figure 8 - Window for negotiation with an offline user.

Pentium4 3.0GHz processor. They are connected through
1000Base-T Ethernet and are running on Turbolinux 10 op-
erating system whose kernel version is 2.6.0. The version of
the Java language runtime environment is 1.4.2, and its heap
size is 512MB.

We examined how the number of meetings were able to be
scheduled without “Out of Memory” error. The result is
shown in Figs. 9 and 10. Although the number of schedulable
meetings decreases as the number of participants increases,
the number of agents where the maximum number of meet-
ings is scheduled concurrently on the scheduling server is al-
most constant.

 0

 50

 100

 150

 0 10 20 30

N
u
m

b
er

 o
f

sc
h
ed

u
la

b
le

 m
ee

ti
n
g

Number of participants

Figure 9 - The change of the number of schedulable meetings
when the number of participants increases.

5.CONCLUSION

In this paper, a meeting scheduling system based on mobile
agent technology is presented to reduce time and effort on
meeting scheduling. With the proposed system, all an inviter
of a meeting has to do is to specify who should join the meet-
ing, a timeframe during which the meeting must be held, the
duration of the meeting, and the subject of the meeting. The
rest is done by agents, i.e., query agents collect all the par-
ticipants’ schedule, and a scheduling agent searches the date

 700

 710

 720

 730

 740

 750

 0 10 20 30

N
u
m

b
er

 o
f

ag
en

ts

Number of participants

Figure 10 - The change of the number of agents when the
number of participants increases.

and time available for the meeting, negotiates with appropri-
ate participants if necessary, and finally notifies the arranged
date and time of the meeting to all the participants. The pro-
posed system simplifies the work not only of an inviter, but
also of all participants. Instead of inputting all schedule into a
server before any meeting is intended to call, one is requested
to input only the schedule between the timeframe of a meet-
ing.

To make the proposed system more practical, it is necessary
to consider the priorities of participants, i.e., the key person
of a meeting must join it; on the contrary, a meeting may be
opened without persons with low prior. In addition to that,
when the proposed system is used in a large organization,
it is necessary to increase the number of schedulable meet-
ings. That will be achieved by a distributed approach in future
work.

REFERENCES

[1] IBM: Lotus Notes/Domino (2005).
http://www-306.ibm.com/software/lotus/.

[2] Microsoft: Microsoft Exchange Server (2005).
http://www.microsoft.com/exchange/default.mspx.

[3] Cybozu: Share360 (2005). http://cybozu.com/.

[4] Sen, S. and Durfee, E. H.: On the design of an adaptive
meeting scheduler, Proceedings of the Tenth IEEE Con-
ference on Artificial Intelligence for Applications, pp.
40–46 (1994).

[5] Jennings, N. R. and Jackson, A. J.: Agent-based Meet-
ing Scheduling: A Design and Implementation, IEE
Electronics Letters, Vol. 31, No. 5, pp. 350–352 (1995).

83

[6] Bui, H. H., Venkatesh, S. and Kireonska, D.: Learning
Other Agents’ Preferences in Multiagent Negotiation,
Proceedings of the Thirteenth National Conference on
Artificial Intelligence, Vol. 2, pp. 114–119 (1996).

[7] Garrido, L. and Sycara, K.: Multi-agent meeting
scheduling: Preliminary experimental results, Proceed-
ings of the Second International Conference on Multi-
Agent Systems, AAAI Press, pp. 95–102 (1996).

[8] Modi, P. J. and Veloso, M.: Multiagent Meeting
Scheduling with Rescheduling, Proceedings of the Fifth
Workshop on Distributed Constraint Reasoning (2004).

[9] Kawamura, T., Motomura, S. and Sugahara, K.: Imple-
mentation of a Logic-based Multi Agent Framework on
Java Environment, Proceedings of International Con-
ference on Integration of Knowledge Intensive Multi-
Agent Systems (Hexmoor, H.(ed.)), pp. 486–491 (2005).
Waltham, Massachusetts, USA.

[10] Motomura, S., Kawamura, T. and Sugahara, K.: Logic-
Based Mobile Agent Framework with a Concept of
“Field”, IPSJ Journal, Vol. 47, No. 4, pp. 1230–1238
(2006).

[11] Motomura, S., Kawamura, T. and Sugahara, K.: A
Logic-Based Mobile Agent Framework for WEB Ap-
plications, Proceedings of the 2nd International Con-
ference on Web Information Systems and Technologies,
pp. 121–126 (2006). Setubal, Portugal.

84

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

