
Realization of Persistency
in a Multi-Agent Framework

Shinichi MOTOMURA and Junya KISHIDA
The Graduate School of Engineering, Tottori University

4–101, Koyama-Minami, Tottori 680–8552, JAPAN
motomura@tottori-u.ac.jp

Takao KAWAMURA and Kazunori SUGAHARA
Department of Information and Knowledge Engineering

Tottori University
4–101, Koyama-Minami, Tottori 680–8552, JAPAN

+81 857 31 5217
{kawamura,sugahara}@ike.tottori-u.ac.jp

Abstract— In this paper, we present persistency of an agent
runtime environment and generated agents. Maglog which is
implemented in Java environments is taken up as an example
of the agent runtime environment. Maglog consists of three
basic components, which are agents, agent servers and fields.
Agent server and fields are corresponding to agent runtime
environments. The persistency is used for the following two
purposes. One is for suspending agents. The other is for
suspending a system which is developed by using Maglog.
For example, when a computer will be stopped while a system
is running, agents are suspended then their suspended state
is stored. Subsequently, the agent server is suspended then
the suspended state and fields are stored. When the system
is restarted, first, the agent server resumes then the agents
resume.

1.INTRODUCTION

Multi-agent system is drawing attention as a structural model
for many software systems including distributed systems and
artificial intelligence systems[1]. In general, a multi-agent
system consists of agents and an agent runtime environment
(hereafter referred to as ARE). An ARE provides required
functions for agents. In a multi-agent system, a number of
autonomous agents cooperates mutually and achieves given
tasks. These agents are spread on some computers and mi-
grate among these by computer networks. However, a num-
ber of agents concentrate on one computer according to the
circumstances. For execution of these agents on one com-
puter at same time, a large amount of resource such as mass
memory capacity and a fast CPU is required. Consequently,
under the limited resource circumstances, some agents on the
computer should be swapped out to second storage such as a
hard disk drive.

In order to realize agent swapping out functions to hard
disks, multi-agent frameworks should support persistency of
agents. Several multi-agent frameworks, such as Aglets[2]
and MobileSpaces[3], support persistency of agents. How-
ever, in these multi-agent frameworks, when an agent exe-
cutes a program which describes the behavior of the agent,
the agent can suspend but can not resume from the stopped
point.

The persistency of agents that we require is described as fol-
lows.

Suspend When an agent suspends, the agent and its sus-
pended state are written in hard disks.

Resume When the agent resumes,according to the informa-
tion written in the hard disk. The agent restarts from the
stopped point.

Besides, if a system which is developed by a multi-agent
framework tries to suspend, not only agents but also an ARE
has to support persistency. However, there are no multi-agent
frameworks which support persistency of an ARE.

In multi-agent systems, mobility of agents is important be-
cause of not only reducing network latency but simplifying
architecture of software systems[4]. Therefore, the following
situations must be considered.

Situation 1 An agent suspends on a computer where the
agent was created.

Situation 2 An agent suspends on a computer where the
agent was not created.

Situation 3 When an agent tries to come back to a computer,
the computer has stopped.

First situation is solved easily. In this paper, the second situ-
ation is solved. In the third situation, when an agent cannot

281-4244-0945-4/07/$25.00 ©2007 IEEE

come back to a computer, the agent has to know the reason
why the system was suspended or was broken down. In order
to solve the problem, when an agent cannot come back to a
computer, the agent should sleeps. Then, when the computer
restarts, the agent should be woken up. Multi-agent frame-
works should support the function, which agents are woken
up when suspended computer restarts. However, the function
is not implemented yet.

We examine that persistency of agents and an ARE is intro-
duced into a multi-agent framework which is implemented in
a Java environment. Maglog[5] which is our proposed multi-
agent framework is took up as an example of a multi-agent
framework. It is based on Prolog and is implemented by ex-
tending PrologCafé[6], which is a Prolog-to-Java source-to-
source translator system.

This paper is organized in 5 sections. The design of persis-
tency in a multi-agent framework is explained in Section 2.
We describe the implementation of in Section 3 and experi-
mental results in Section 4. Finally, some concluding remarks
are drawn in Section 5.

2.DESIGN

A multi-agent framework consists of agents and an ARE in
general. Agents and an ARE consist of Java objects in multi-
agent frameworks, which are implemented in a Java environ-
ment. An agent is an autonomous program and a thread on an
ARE. The characteristic of an ARE is to provide the follow-
ing functions for agents:

1. Management agents, such as creation and destruction,

2. Communication with other agents,

3. Migration to another computer in a network,

4. Accessing an operation system’s functions, such as read-
ing/writing files.

The remaining of this section will explain each of how to re-
alize persistency of agents and how to realize persistency of
an ARE.

Persistency of Agent

1. Suspending/Resuming Timing

Figure 1 shows an agent’s life cycle while an agent is
destroyed after the agent is created. To begin with, an
agent is created then the agent is activated. Next, in or-
der to execute procedures which the agent has, the agent
runs. If the agent waits a message from other agents, a
thread of the agent stops, and so the agent is blocked.
When the blocked agent receives the message, a thread
of the agent runs again, and so the agent runs. Agents
run autonomously, so that agents can suspend when only
agents are running. There are the following situations
when agents try to suspend.

Figure 1 - Agent’s life cycle.

(a) An agent executes a procedure to suspend the
agent.

(b) An agent receives an offer of which other agents
request to suspend the agent.

(c) An agent receives an order of which an ARE re-
quests to suspend the agent.

If an agent receives a suspending order from an ARE
when the agent is blocked, the agent runs again then
suspends. After the agent resumes, the agent is blocked
again.

On the other hand, an agent is resumed by an ARE in the
following situations.

(a) A user or another agent requests to resume the
agent.

(b) An ARE decides to resume the agent. For example,
if an ARE suspends agents which are under low
load, the ARE will resume the agents later.

2. Required Mechanisms

Agents consist of Java objects. In order to realize persis-
tency of agents, Java objects are serialized. The general
contract for serializing Java objects is specified in the
Java Object Serialization Specification[7]. Object Seri-
alization is a mechanism built into the core Java libraries
for writing a graph of objects into a stream of data. How-
ever, Object Serialization is not enough. If no custom
Object Serialization is used, objects of an agent may not
be deserialized on a host where the agent was not cre-
ated. Because the class descriptions of the objects may
not be in the host. Therefore, Object Serialization is cus-
tomized with dynamic class loaders. A dynamic class
loader contains bytecodes of Java classes of an agent and
loads the Java classes if necessary. Details of the custom
Object Serialization and the dynamic class loader are de-
scribed in another paper[8].

3. Steps of Suspending/Resuming

Figure 2 shows an overview of persistency mechanisms.
When an agent executes a procedure to suspend, the

29

Figure 2 - An overview of agent’s persistency mechanisms.

agent calls a function in the ARE on which it is running,
the following steps are performed.

(a) AgentController receives the call then dispatches
the agent to AgentSerializer, which implements the
custom Object Serialization.

(b) AgentSerializer retrieves the dynamic class loader
object from the agent. The dynamic class loader
object is serialized then is written in a file.

(c) AgentSerializer serializes objects of the agent then
writes in a file.

(d) AgentController stops a thread of the agent. In or-
der to be able to resume, AgentController knows
the suspended agent’s information, such as an
agent’s identifier and about above files.

When an ARE resumes an agent, the following steps are
performed.

(a) AgentController gets the dynamic class loader ob-
ject which is deserialized by AgentDeserializer.

(b) AgentController gets objects of the agent which
are deserialized by AgentDeserializer with the dy-
namic class loader object.

(c) AgentController runs a thread of the agent.

Persistency of ARE

An ARE is suspended when a user or an agent requests to
suspend. Although an ARE also consists of Java objects, a
whole of it can not be serialized so that some components can
not be serialized. Figure 3 shows an overview of an ARE.
In this figure, components to provide network communica-
tion and accessing files cannot be serialized. Properties and
AgentController of the other components have to be serial-
ized, AgentSerializer and AgentDeserializer are not neces-
sary to be serialized. When an ARE is suspended, the follow-
ing steps are performed.

Figure 3 - An overview of an ARE.

1. AgentController gives a suspending order to all agents
then waits for until the all agents complete suspending.

2. The ARE serializes serializable components then writes
them in files.

3. The ARE shuts down.

When a user wants to run an ARE again, the ARE is resumed.
The resuming are performed as follows.

1. A user starts up the ARE with a parameter to resume.

2. The ARE reads the files then deserializes the compo-
nents.

3. The ARE resumes, then AgentController resumes all
suspended agents.

3.IMPLEMENTATION

To confirm the behaviors, we implement persistency of agents
and AREs in our multi-agent framework Maglog.

Overview of Maglog

Maglog is a multi-agent framework based on Prolog and
is implemented in a Java environment. Figure 4 shows an
overview of a multi-agent system built by using Maglog. Ma-
glog consists of three basic components, which are agents,
agent servers and fields. An agent server and fields provide
functions of as an ARE.

1. Agent

An agent has the following functions:

(a) Execution of a program that describes the behavior
of the agent,

30

Agent

Field

Agent Server

Host

NetworkMigration

Figure 4 - Overview of a multi-agent system built using Ma-
glog.

(b) Execution of procedures stored in a field where the
agent is currently located,

(c) Communication with other agents through a field,

(d) Creation of agents and fields,

(e) Migration to another host in a network.

An agent has Prolog interpreter because the agent re-
sumes from its stopped point. If an agent is running on
JVM directly without Prolog interpreter, when the agent
can not resume from the stopped point. Because Java
API does not provide methods to access program counter
and stack in order to access a thread’s execution state. In
contrast, Maglog has the WAM[9] as Prolog interpreter
which is an abstract machine tailored to Prolog.

2. Agent Server

An agent server is a runtime environment that provides
required functions for agents. For example, an agent
server provides a migration function. When an agent mi-
grates from host-A to host-B, the agent server on host-A
suspends the agent’s execution and transports the agent
to host-B. After that, the agent server on host-B resumes
execution of the agent. An agent server also manages
fields and provides functions that enable an agent to uti-
lize them.

3. Field

A field is an object managed by an agent server to
hold Prolog clauses. An agent communicates with other
agents indirectly through fields. An agent can communi-
cate with other agents not only asynchronously but also
synchronously.

Persistency of Agent

Figure 5 shows a UML diagram which is an overview of
classes of Maglog. ClassLoader and CodeLoader are cor-
responded to DynamicClassLoader. AgentScheduler is cor-
responded to AgentController. AgentServerRemote provides
network functions which are using Java RMI and XML-RPC.

Agent AgentServer AgentServerRemote

AgentScheduler

ClassLoader

AgentDeserializerAgentSerializer

Field

CodeLoader

AgentServerSerializer AgentServerDeserializer

Property

Figure 5 - A UML diagram which is an overview of classes
of Maglog

Figure 6 - A screen-shot of the user interface program when
a user tries to suspend an agent.

31

Figure 7 - A screen-shot of the user interface program when
a user tries to resume an agent.

Table 1 - The experimental conditions.

CPU Intel Xeon 3GHz
Memory 1GB

OS TurboLinux 10 Desktop
JRE 1.4.2

An agent can suspend by executing the predicate, which
name is suspend. When an agent executes suspend predi-
cate, objects of the agent are dispatched to AgentSerializer
via AgentServer. AgentSerializer writes serialized Class-
Loader object and serialized CodeLoader objects in a file,
which name is generated using the agent’s identifier. The
file is called SuspendedClassLoaderFile. Then AgentSerial-
izer writes serialized Agent object in a file, which name is
generated using the agent’s identifier. The file is called Sus-
pendedAgentFile. Finally, AgentScheduler stops the thread
of the agent.

A user can suspend an agent and can resume the agent by
a user interface program for manipulation of agent servers.
Figure 6 shows a screen-shot of the user interface program
when a user tries to suspend an agent. If the thread of the
agent waits or sleeps, the thread is woken up by AgentSched-
uler using the Java notify method, then objects of the agent
are serialized.

Figure 7 shows a screen-shot of the user interface program
when a user tries to resume an agent. The user chooses the
SuspendedAgentFile. AgentDeserializer reads the file then
reads the SuspendedClassLoaderFile. AgentDeserializer de-
serializes objects of the agent using above read files then dis-
patches deserialized objects to AgentScheduler. The thread
of the agent is started by AgentScheduler.

Persistency of Agent Server and Field

A user can suspend an agent server by the user interface pro-
gram and can resume the agent server with a command-line
option, which is --resume. When a user tries to suspend
an agent server, the user clicks the SUSPEND Agent-Server
button in Fig. 6. First, AgentScheduler serializes objects
of all agents by AgentSerializer. Secondly, objects of Field
and objects of Property are serialized by AgentServerSerial-
izer then are written in a file. The file is called SuspendedA-
gentServerFile. Finally, the agent server shuts down. When a
user starts the agent server again with the command-line op-
tion, AgentServerDeserializer reads the file then deserializes
the objects of Field and objects of Property. AgentScheduler
deserializes objects of all serialized agents by AgentDeserial-
izer, then threads of the agents are started.

4.EXPERIMENTS

This section presents experimental results. Table 1 shows the
experimental conditions. In one experiment, we examine the
elapsed time and size of the generated files when an agent is
suspended. Subsequently, we examine the elapsed time when
the agent resumes. The agent’s class file size is 1.2KB. Table
2 shows the elapsed times of suspending and resuming. Table
3 shows SuspendedAgentFile size and SuspendedClassLoad-
erFile size.

In the other experiment, we examine the elapsed time of sus-
pending and SuspendedAgentServerFile size when an agent
server is suspended. The 100 agents are running on the agent
server. Subsequently, we examine the elapsed time when the
agent server resumes. The agent’s class file size is 1.2KB.
Table 4 shows the elapsed times of suspending and resuming.
The SuspendedAgentServerFile size is 69KB.

Table 2 - The elapsed time of suspending an agent and re-
suming the agent.

Suspending time Resuming time
280 msec 154 msec

The agent’s class file size 1.2KB.

Table 3 - The SuspendedAgentFile size and the Suspended-
ClassLoaderFile size.

SuspendedAgentFile SuspendedClassLoaderFile
66.8 KB 2.2 KB

The agent’s class file size 1.2KB.

Table 4 - The elapsed time of suspending an agent server and
resuming the agent server.

Suspending time Resuming time
36,175 msec 10,426 msec

Each agent’s class file size 1.2KB.

32

5.CONCLUSION

We have implemented persistency of agents, agent servers
and fields in Maglog for the following two purposes. One
is for suspending agents. The other is for suspending a sys-
tem which is developed by using Maglog. For example, when
a computer will be stopped while a system is running, agents
are suspended then their suspended state is stored. Subse-
quently, the agent server is suspended then the suspended
state and fields are stored. When the system restarts, first,
the agent server resumes then the agents resume.

In order to realize persistency of agents, Maglog supports
customized Object Serialization and the dynamic class load-
ing mechanism. Agent servers do not consist of only seri-
alized components, and so agent server’s persistency steps
which serialized components are serialized and an agent
server shuts down are defined.

In Maglog, it often happens that many agents run at the same
time. Using the persistence of agents, it will be added in the
future that agents which are under low load are swapped out.

REFERENCES

[1] Weiss, G.(ed.): Multi-Agent Systems: A Modern Ap-
proach to Artificial Intelligence, MIT Press (2000).

[2] Lange, D. B. and Oshima, M.: Programming and De-
ploying Java Mobile Agents with Aglets, Addison Wesley
(1998).

[3] Satoh, I.: MobileSpaces: A Framework for Building
Adaptive Distributed Applications Using a Hierarchical
Mobile Agent System, Proceedings of the IEEE Inter-
national Conference on Distributed Computing Systems,
IEEE Press, pp. 161–168 (2000).

[4] Lange, D. B. and Oshima, M.: Seven good reasons for
mobile agents, Communications of the ACM, Vol. 42,
No. 3, pp. 88–89 (1999).

[5] Motomura, S., Kawamura, T. and Sugahara, K.: Logic-
Based Mobile Agent Framework with a Concept of
“Field”, IPSJ Journal, Vol. 47, No. 4, pp. 1230–1238
(2006).

[6] Banbara, M. and Tamura, N.: Translating a Linear Logic
Programming Language into Java, Proceedings of the
ICLP’ 99 Workshop on Parallelism and Implementation
Technology for (Constraint) Logic Programming Lan-
guages (M.Carro, I.Dutra et al.(eds.)), pp. 19–39 (1999).

[7] Sun Microsystems: The JavaTM Ob-
ject Serialization Specification, Web page.
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/.

[8] Motomura, S., Kawamura, T. and Sugahara, K.: Com-
bination of XML-RPC and Mobile Agent Technologies,

Proceedings of the IASTED International Conference on
Parallel and Distributed Computing and Systems, pp.
552–557 (2006). Dallas, Texas, USA.

[9] Aı̈t-Kaci, H.: Warren’s Abstract Machine A Tutorial Re-
construction (1999).

33

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

