
COMBINATION OF XML-RPC AND MOBILE AGENT TECHNOLOGIES

Shinichi MOTOMURA
The Graduate School of Engineering, Tottori University

Tottori University
4–101, Koyama-Minami

Tottori, JAPAN
motomura@tottori-u.ac.jp

Takao KAWAMURA, and Kazunori SUGAHARA
Department of Information and Knowledge Engineering

Tottori University
4–101, Koyama-Minami

Tottori, JAPAN
{kawamura,sugahara}@ike.tottori-u.ac.jp

ABSTRACT
In this paper, we present usages of XML-RPC and the ef-
fectiveness in a mobile agent framework named Maglog
which is implemented in a Java environment. XML-RPC
is used for the following two purposes in Maglog. First, it
is a transport mechanism that an agent migrates from one
computer to another one. Second, it is an interface which
is accessible from applications, written in any other lan-
guage, which support for XML-RPC. In order to realize an
agent migration mechanism, custom serialization mecha-
nism is implemented to customize Java’s built-in serializa-
tion mechanism. In custom serialization mechanism, ob-
jects which represent for an agent are encoded as an XML
document. Encoded objects are transferred using XML-
RPC. For deserialization, a dynamic class loader is imple-
mented. If no custom serialization is used, an object cannot
be deserialized on a remote host, because the class descrip-
tion of the object may not be in the host.

As an example of an interface which is accessible
from applications, we show a user interface program of a
distributed e-Learning system which we have developed.

KEY WORDS
Distributed software systems and applications, XML-RPC,
XML, Mobile agent, Java.

1 Introduction

Recently, XML-RPC[1] is attracting attention as a technol-
ogy for developing web applications. XML-RPC is a re-
mote procedure call protocol which uses XML to encode
its calls and HTTP as a transport mechanism. XML-RPC is
used to develop web services[2], because it is a very simple
protocol, defining only a handful of data types and com-
mands. On the other hand, Ajax[3], shorthand for Asyn-
chronous JavaScript and XML, is often used to create in-
teractive web applications recently. In Ajax, XMLHttpRe-
quest Object[4] is used to exchange data asynchronously
with a web server. XMLHttpRequest is an API that can
be used by JavaScript, JScript, VBScript and other web
browser scripting languages. The API is used to transfer
and to manipulate XML data to a web server and from a
web server using HTTP. In many cases, XML-RPC is im-
plemented to handle client’s requests using XMLHttpRe-

quest in web servers.
We propose a mobile agent framework named

Maglog[5] which is implemented in a Java environment. In
this paper, we describe the following two usages of XML-
RPC in Maglog and present the effectiveness. First, it is
a transport mechanism that an agent migrates from one
computer to another one. Second, it is an interface which
is accessible from applications, written in any other lan-
guage, which support for XML-RPC. For agent migration,
an agent is encoded as an XML document and is transferred
using HTTP. Maglog has another transport mechanism,
RMI. RMI is more superior to XML-RPC from the view-
point of the migration speed. On the other hand, XML-
RPC is more firewall friendly than RMI. HTTP connections
used as the transport connections for XML-RPC can work
through many common firewall security measures without
requiring changes to the firewall filtering rules. RMI may
often be blocked.

Adopting XML-RPC in our system, existing many
tools to process XML documents can be utilized efficiently.
For example, SAX and DOM as programming APIs, Java
Architecture for XML Binding (JAXB)[6] as an XML
Processing API, and NeoCore[7] and Xindice[8] as XML
databases. We consider another usage of XML-RPC in this
system for providing persistence of agents. That is, to store
the agents in XML databases and to retrieve them.

2 Overview of Maglog

Maglog is a mobile agent framework based on Prolog and
is implemented in a Java environment by extending Prolog-
Caf́e[9], which is a Prolog-to-Java source-to-source trans-
lator system. Figure 1 shows an overview of a mobile agent
system built by using Maglog. In the figure, two computers
(hereafter referred to as hosts) are connected to a network
and agent servers are running on each of them to activate
agents and to provide fields for them.

The remainder of this section describes the three basic
components of Maglog, namely, agent, agent server, and
field.

2.1 Agent

An agent has the following functions:

513-075 552

debbie

Agent

Field

Agent Server

Host

NetworkMigration

Figure 1. Overview of a mobile agent system built using
Maglog.

1. Execution of a program that describes the behavior of
the agent,

2. Execution of procedures stored in a field where the
agent is currently located,

3. Communication with other agents through a field,

4. Creation of agents and fields,

5. Migration to another host in a network.

An agent has Prolog interpreter because the class of migra-
tion is strong migration, which involves the transparent mi-
gration of an agent’s execution state as well as its program
and data. If an agent is running on JVM directly without
Prolog interpreter, when the agent migrates to another host,
the agent cannot perform strong migration. Because Java
API does not provide methods to access program counter
and stack in order to access a thread’s execution state. In
contrast, Maglog has the WAM[10] as Prolog interpreter
which is an abstract machine tailored to Prolog.

2.2 Agent Server

An agent server is a runtime environment that provides re-
quired functions for agents. For example, an agent server
provides a migration function. When an agent migrates
from host-A to host-B, the agent server on host-A suspends
the agent’s execution and transports the agent to host-B.
After that, the agent server on host-B resumes execution of
the agent.

An agent server also manages fields and provides
functions that enable an agent to utilize them. An Agent
server has an XML-RPC interface, which is accessible
from applications written in any other language with sup-
port for XML-RPC.

2.3 Field

A field is an object managed by an agent server to hold
Prolog clauses. An agent communicates with other agents

indirectly through fields so that the following built-in pred-
icates are provided in Maglog:

fassert(Clause, Field)
fretract(Clause, Field)

The first argumentClause of these predicates is a clause
to be added or removed from the field specified by the sec-
ond argumentField . fassert/2 inserts the clause in
front of all the other clauses with the same functor and arity.
Functor and arity mean the name of a predicate and its num-
ber of arguments, respectively.fretract/2 removes the
next unifiable clause that matches the argument from the
field. This built-in predicate is re-executable, that is, each
time it is executed it attempts to remove the next clause
that matches its argument. If there are no more clauses to
remove, then this predicate fails.

By using these predicates, an agent can communicate
with other agents not only asynchronously but also syn-
chronously. An agent has two modes for execution of pro-
cedures stored in a field. In the fail mode, the execution
fails when an agent attempts to execute or to retract a non-
existent clause in a field. In the block mode, an agent that
attempts to execute or to retract a non-existent clause in a
field is blocked until another agent adds the target clause
to the field. For agents in the block mode, a field can be
used as a synchronous communication mechanism such as
a tuple space in the Linda model[11].

3 Usage of XML-RPC

XML-RPC is a remote procedure call protocol using HTTP
as the transport and XML as the encoding. XML-RPC is
designed to be as simple as possible, while allowing com-
plex data structures to be transmitted, and processed and
returned. An XML-RPC message is an HTTP-POST re-
quest. The body of the request is in XML. A procedure
executes on a server and the value it returns is also format-
ted in XML. Procedure parameters can be scalars, numbers,
strings, dates, etc.; and can also be complex record and list
structures.

XML-RPC is used for the following two purposes in
Maglog. First, it is an agent migration mechanism. Sec-
ond, it is an interface which is accessible from applications,
written in any other language, which support for XML-
RPC. The remainder of this section describes the two us-
ages of XML-RPC.

3.1 Agent Migration Mechanism

In Maglog, an agent consists of Java objects (hereafter re-
ferred to as objects). Therefore, migration of agents is that
objects and Java classes (hereafter referred to as classes) of
the objects are transferred. In order to transfer objects and
classes, marshalling mechanism and dynamic class loading
mechanism are required. The mechanisms are described

553

the following from the viewpoints of marshalling and un-
marshalling.

In order to transfer objects, they must be marshalled.
Java provides object serialization for object marshalling.
Serialization is a mechanism built into the core Java li-
braries for writing a graph of objects into a stream of data.
This stream of data can be programmatically manipulated,
and a deep copy of the objects can be made by reversing
the process. This reversal is often called deserialization or
unmarshalling.

An XML-RPC message is an HTTP-POST request.
The body of the request must be in XML so that a seri-
alized object is encoded as a base64 string. In addition,
custom serialization is required. If no custom serialization
is used, an object cannot be deserialized on a remote host,
because the class description of the object may not be in the
host. Therefore when an object is serialized, an annotation
is used to record a codebase information.

Figure 2 shows an overview of the agent migration
mechanism which is used in Maglog. Agent-A has a Dy-
namicClassLoader which contains bytecodes of agent-A’s
classes and loads the classes if necessary. When agent-A
migrates from AgentServer-A to AgentServer-B, the fol-
lowing two steps are performed. First step is transfer of
the DynamicClassLoader contained in agent-A, and in the
second step, agent-A is transferred.

The first step is performed in the following manner.
First, the DynamicClassLoader is serialized, then it is en-
coded as an XML document using XMLEncoder. The Dy-
namicClassLoader is transferred to AgentServer-B using
XML-RPCHandler. XML-RPCHandler in AgentServer-
A sends an XML-RPC request to XML-RPCServer in
AgentServer-B. When XML-RPCServer in AgentServer-B
receives the request, the XML document in the request is
dispatched to XMLDecoder. Then the XML document is
decoded, and the objects which represent for the Dynam-
icClassLoader are deserialized. Finally the DynamicClass-
Loader is dispatched to DynamicClassLoaderRegister, then
the key which is mapped to the DynamicClassLoader is
generated by DynamicClassLoaderRegister and is returned
to AgentServer-A.

Second step is performed in the following manner.
Agent-A is serialized using MaglogSerializer, and the
above key is recorded in the bytecodes as an annotation.
Then agent-A is transferred to AgentServer-B using XML-
RPCHandler. XML-RPCHandler in AgentServer-A sends
an XML-RPC request to XML-RPCServer in AgentServer-
B. Listing 1 shows the XML document in the XML-RPC
request. The<methodName> is sendAgent. The name
of agent-A is contained within first<param>. The type
of the value which is contained within the<param> is
<string>. Second<param> contains the base64 string
which is encoded from the bytecodes of the classes. The
type of the value which is contained within the<param> is
<base64>. When XML-RPCServer in AgentServer-B re-
ceives the request, the XML document in the request is dis-
patched to XMLDecoder. Then the XML document is de-

Figure 2. An overview of the agent migration mechanism
which is used in Maglog.

554

coded, and the objects which represent for agent-A are dis-
patched to MaglogDeserializer. MaglogDeserializer takes
the DynamicClassLoader which is mapped to the key from
DynamicClassLoaderRegister. If the class descriptions of
agent-A are not in AgentServer-B, agent-A is deserialized
using the DynamicClassLoader. When the deserialization
succeeds or not, the XML-RPCServer returns an XML-
RPC response. Listing 2 shows an XML document when
a deserialization succeeds. The value which is contained
within the <param> is 1(true), and the type of the value
is <boolean>. Listing 3 shows an XML document when
a deserialization fails. The type of one of the<param>s
is <boolean>, and the value which is contained within
the <param> is 0(false). For the reason which is failed,
a base64 string is contained within the other<param>,
and the type of the value which is contained within the
<param> is <base64>. The base64 string is that an ex-
ception object is encoded as a string.

Listing 1. An example of the XML document in an XML-
RPC request when an agent is transferred.

<?xml version=”1.0”?>
<methodCall>

<methodName>maglog.sendAgent</methodName>
<params>

<param>
<value><string>agent−A</string></value>

</param>
<param>

<value>
<base64>

91IGNhbid0IHJlYWQgdGhpcyE.....
</base64>

</value>
</param>

</params>
</methodCall>

Listing 2. An example of the XML document in an XML-
RPC response when a deserialization succeeds.

<?xml version=”1.0”?>
<methodResponse>

<params>
<param>

<value><boolean>1</boolean></value>
</param>

</params>
</methodResponse>

Listing 3. An example of the XML document in an XML-
RPC response when a deserialization fails.

<?xml version=”1.0”?>

<methodResponse>
<params>

<param>
<value><boolean>0</boolean></value>

</param>
<param>

<value>
<base64>

Diens03S4Ho4e4.....
</base64>

</value>
</param>

</params>
</methodResponse>

3.2 Application Interface

An agent server has an XML-RPC interface, which is ac-
cessible from applications written in any other language
with support for XML-RPC.

The following operations from other systems are
available through XML-RPC:

1. Create and kill agents,

2. Create and delete fields,

3. Assert clauses into fields and retract clauses from
fields,

4. Get a list of names of fields,

5. Get a list of IDs of agents currently existing.

The method names of XML-RPC interface are shown in
Table 1.

An application communicates with an agent by writ-
ing data in a field. Table 2 shows the relations between data
type of Maglog and XML-RPC.

We have developed an application written in Maglog,
and the user interface program of the application is ac-
cessed by using XML-RPC to an agent server. We de-
scribes about the application below in Section 6.

4 Implementation

Figure 3 shows a UML diagram which is an overview of
classes of Maglog. Maglog has not only XML-RPC but
also RMI as a transport mechanism. Therefore, there are
XmlRpcAgentServerRemote class and RmiAgentServer-
Remote class that implements AgentServerRemote inter-
face and each of the classes can be used selectively accord-
ing to intended purpose.

In order to customize Java’s built-in serialization
mechanism, MaglogXmlAgentSerializer class is extended
from ObjectOutputStream class which defined in the
java.io package and is implemented the serialization algo-
rithm. And annotateClass() method is overridden to record

555

Table 1. Method names of XML-RPC interface in Maglog.

No. Method Name Operation
1 createAgent or killAgent an agent is created or

is killed
2 createField or

deleteField
a field is created or is
deleted

3 fieldAssert or
fieldRetract

a clause is added in
a field or is deleted
from a field

4 getFieldListTerm a list of names of
fields is gotten

5 getAgentListTerm a list of IDs of agents
is gotten

Table 2. The relations between data type of Maglog and
XML-RPC.

Maglog XML-RPC
IntegerTerm <i4> or <int>
SymbolTerm <string>
DoubleTerm <double>
ListTerm <array>
StructureTerm or VariableTerm <struct>

a codebase information which is a key generated by Dy-
namicClassLoaderRegister class. For deserialization, Ma-
glogXmlAgentDeserializer class is extended from Object-
InputStream class which defined in the java.io package and
is implemented the deserialization algorithm. And resolve-
Class() method is overridden to load a class using Dynam-
icClassLoader class. MaglogXmlRpcInterface class has
functions as an XML-RPC client and an XML-RPC server,
so that the class handles an XML-RPC request and returns
an XML-RPC response. In addition, the class provides an
XML-RPC interface which is accessible from applications.
The class is implemented by Apache XML-RPC[12].

5 Experiments

This section presents the experimental results for compar-
ison of agent’s migration speed between RMI and XML-
RPC. In the experiment, two PCs with an Intel Xeon 3.4
GHz processor and 1 GB of RAM are connected via a
1000Base-T network. TurboLinux Server10 is used as the
operating system. The version of the Java language run-
time environment is 1.4.2. For the experiments, 100 times
migratoin of one agent between two PCs are examined, and
the average times are summarized inTable 3. Migration of
agents using XML-RPC is about a quarter speed of using
RMI.

Agent AgentServer AgentServerRemote

RmiAgentServerRemote

XmlRpcAgentServerRemote

MaglogXmlAgentSerializer

+annotateClass()

DynamicClassLoader

MaglogXmlRpcInterface

MaglogXmlAgentDeserializer

+resolveClass()

ObjectInputStream ObjectOutputStream

DynamicClassLoaderRegister

Figure 3. A UML diagram which is an overview of classes
of Maglog.

Table 3. Migration times which an agent migrates from one
computer to another one.

RMI 37.90 msec
XML-RPC 152.68 msec

6 Application

A distributed e-Learning system[13, 14] has been built us-
ing Maglog. This e-Learning system has two distinguish-
ing features. Firstly, it is based on P2P architecture for
scalability and robustness. Secondly, each content in the
system is not only data but an agent so that it can mark
user’s answers, tell the correct answers, and show some ex-
tra information without human instruction. Maglog plays
an important role to realize the both features.

Figure 4 shows a screen-shot of the a user interface
program of the system. The program is developed as a
plug-in program of Firefox web browser with Javascript
and XUL which provides a powerful set of user interface
widgets for creating menus, toolbars, tabbed panels, and hi-
erarchical trees. The program communicates with an agent
server using XMLHttpRequest asynchronously. For exam-
ple, when an user requests an exercise, the program sends a
fieldAssert request as encoded XML to an agent server. Af-
ter that, the program can accept other request from the user
without waiting for the response from the agent server.

556

Figure 4. A screen-shot of a user interface of the distributed
e-Learning system.

7 Conclusion

We have developed a mobile agent framework named Ma-
glog, and XML-RPC has been used for the following two
purposes. First, it is a transport mechanism that an agent
migrates from one computer to another one. Second, it
is an interface which is accessible from applications, writ-
ten in any other language, which support for XML-RPC.
In order to realize an agent migration mechanism, cus-
tom serialization mechanism has been implemented to cus-
tomize Java’s built-in serialization mechanism. In custom
serialization mechanism, objects which represent for an
agent are encoded as XML documents. Encoded objects
are transferred using XML-RPC. For deserialization, a dy-
namic class loader has been implemented.

We have developed a distributed e-Learning system
which has been built using Maglog. The user interface pro-
gram of the system communicates with agents using XML-
RPC.

Since XML-RPC provides all network functions re-
quiring for Maglog, the implementation of Maglog can be
simple, and an agent server only opens one port so that fire-
wall filtering rules may not be required to change.

In future work, we consider that the efficient utiliza-
tion of XML databases which can store agents written in
XML form.

References

[1] Winer, D.: XML-RPC Specification,
http://xmlrcp.com/spec.

[2] The World Wide Web Consortium: Web Services Ac-
tivity, http://www.w3.org/2002/ws/.

[3] Garrett, J. J.: Ajax: A New
Approach to Web Applications,
http://adaptivepath.com/publications/essays/archives/
000385.php.

[4] The World Wide Web Consor-
tium: The XMLHttpRequest Object,
http://www.w3.org/TR/XMLHttpRequest/.

[5] Motomura, S., Kawamura, T. and Sugahara, K.:
Logic-Based Mobile Agent Framework with a Con-
cept of “Field”, IPSJ Journal, Vol. 47, No. 4, pp.
1230–1238 (2006).

[6] Microsystems, S.: Java Architecture for XML Bind-
ing, http://java.sun.com/webservices/jaxb/.

[7] Xpriori LLC: NeoCore, http://www.xpriori.com/.

[8] Apache Software Foundation: Apache Xindice,
http://xml.apache.org/xindice/.

[9] Banbara, M. and Tamura, N.: Translating a Linear
Logic Programming Language into Java,Proceedings
of the ICLP’ 99 Workshop on Parallelism and Im-
plementation Technology for (Constraint) Logic Pro-
gramming Languages(M.Carro, I.Dutra et al.(eds.)),
pp. 19–39 (1999).

[10] Aı̈t-Kaci, H.: Warren’s Abstract Machine A Tutorial
Reconstruction (1999).

[11] Carriero, N. and Gelernter, D.: Linda in Context,
Communications of the ACM, Vol. 32, No. 4, pp. 444–
458 (1989).

[12] Apache Software Foundation: About Apache XML-
RPC, http://ws.apache.org/xmlrpc/.

[13] Kawamura, T. and Sugahara, K.: A Mobile Agent-
Based P2P e-Learning System,IPSJ Journal, Vol. 46,
No. 1, pp. 222–225 (2005).

[14] Motomura, S., Kawamura, T., Nakatani, R. and Suga-
hara, K.: P2P Web-Based Training System Using Mo-
bile Agent Technologies,Proceedings of the 1st Inter-
national Conference on Web Information Systems and
Technologies, pp. 202–205 (2005). Miami, USA.

557

