
MEETING ARRANGEMENT SYSTEM
BASED ON MOBILE AGENT TECHNOLOGY

Takao Kawamura, Shinichi Motomura, Kengo Kagemoto and Kazunori Sugahara
Tottori University

4-101, Koyama-Minami, Tottori 680-8552, JAPAN
Email: motomura@tottori-u.ac.jp, {kawamura,kagemoto,sugahara}@ike.tottori-u.ac.jp

Keywords: Meeting arrangement system, groupware, mobile agent.

Abstract: In this paper, a meeting arrangement system based on mobile agent technology is proposed. The users of
the system do not need to input all of their schedules unlike the existing groupwares. When a user intends
to call a meeting, he only inputs information about the meeting. On behalf of the inviter, mobile agents
move around each invited user’s computer to ask whether he can join the meeting and negotiate with him
if necessary. Therefore, the inviter’s work becomes less compared with using the existing groupwares. We
have developed the system with our mobile agent framework on Java platform and confirmed its effectiveness
through experiments.

1 INTRODUCTION

The necessity of face-to-face meeting has not de-
creased at all, even though interactive media such as
telephone, facsimile, and email have diffused widely.
In general, the following steps are required to orga-
nize a meeting.

1. Specify who should join the meeting and a time-
frame during which the meeting must be held.

2. Send mails or phone all the participants a number
of times to collect their schedules.

3. Merge their schedules and fix the date and time of
the meeting.

4. Select appropriate participants, ask them to open
the schedule, and return to step 3 if there is no date
and time available, otherwise go to step 5.

5. Notify the arranged date and time of the meeting to
all the participants.

Those are time-consuming routine tasks, especially
steps 3 and 4.

Some sort of groupware would assist us to organize
a meeting. The term groupware refers to software ap-
plications, such as Lotus Notes/Domino (IBM, 2005),
Microsoft Exchange Server (Microsoft, 2005), and
Cybozu Share360 (Cybozu, 2005), designed to al-
low a group of users on a network to work simulta-
neously on a project. Groupware may provide ser-

vices for communicating, group document develop-
ment, scheduling, and tracking.

To utilize a groupware to organize a meeting, all
schedule of participants must be managed by the
groupware server, therefore all possible participants
are requested to input their schedules into the server
always. If anyone fails to maintain his schedule on
the server, the scheduling function of a groupware be-
comes useless. In addition, although existing group-
wares have a function to find the date and time on
which all participants schedule is open, they don’t
have a function to negotiate with appropriate partic-
ipants to open the schedule. That is to say, the above
most difficult steps 3 and 4 are left to people.

In this paper, a meeting arrangement system based
on mobile agent technology is proposed to reduce
time and effort on meeting scheduling. Although
there are many reports on the agent-based meeting
scheduling, especially algorithms or strategies for ne-
gotiation among multi-agents (Sen and Durfee, 1994;
Jennings and Jackson, 1995; Bui et al., 1996; Gar-
rido and Sycara, 1996; Modi and Veloso, 2004), there
are few on developing an application system which
includes the following features:

1. Nobody is requested to input his all schedule into a
server before any meeting is intended to call.

2. An agent selects appropriate participants and asks
them to open the schedule.

117



This paper is organized in 5 sections. The design
of the proposed system and an implementation of the
system on Java platform are described in Section 2
and 3, respectively. In Section 4, we present the re-
sult of experiments. Finally, in Section 5, we describe
some concluding remarks.

2 MEETING ARRANGEMENT
SYSTEM

In this section the design of the proposed meeting ar-
rangement system will be presented.

When a user of the proposed system intends to call
a meeting, he selects participants from registered on-
line users. In addition, he provides the further infor-
mation about the meeting that consists of a timeframe
during which the meeting must be held, the duration
of the meeting, and the subject of the meeting. Then
an agent is created to arrange the meeting and collect
schedules from both the inviter and invitees. They are
requested to classify each hour in the timeframe into
three categories: “free”, “tentative”, and “busy”. An
agent may ask a user whether he can join a meeting
only when the meeting will be held across his ten-
tative hours. In addition to the three categories, an
inviter of a meeting can select the category named
“preferable” in which he hopes the meeting will be
held.

The negotiation procedure of an agent is as follows:

1. Merge all the participants’ schedules and generate
a list which contains all the possible continuous
hours up to the meeting length. Hours classified
as busy by one more participants are excluded.

2. Order the list by the number of hours relating a ne-
gotiation, by the number of persons relating a ne-
gotiation, and by the inviter’s preference.

3. Exit from this procedure if no negotiation is
needed, i.e., the number of hours relating a nego-
tiation of the top element of the list is zero.

4. Retrieve each element of the list and negotiate with
the related participants to open their schedules until
a negotiation succeeds or the list is empty.

3 IMPLEMENTATION

An implementation of the proposed system has been
developed on Java platform by using our mobile agent
framework, Maglog(Motomura et al., 2005; Kawa-
mura et al., 2005) .

As shown in Fig. 1, in this implementation, agents
described in the previous section are divided two
types of agents: scheduling agents and query agents.

A scheduling agent corresponding to a meeting cre-
ates query agents for each participant of the meeting.
Each query agent asks one participant’s schedule con-
currently. The scheduling agent does the rest of the
work for meeting scheduling.

In addition to the two types of agents, a user man-
agement agent is introduced to manage user informa-
tion that include login name, password, IP address of
the user’s computer, and online/offline status. Login
name and password are static while IP address and
online/offline status are updated dynamically when a
user logins to the system. A user can use any com-
puter on the network because his login name is tied
up with the IP address of his computer dynamically.
Each query agent migrates to the user management
computer to obtain the IP address of a participant’s
computer at the first, and then migrates to the partic-
ipant’s computer by using the obtained IP address to
ask his schedule. The IP address of the user manage-
ment computer is assumed as known.

Figure 1: Overview of the meeting arrangement system de-
veloped on Java platform.

As mentioned in the above section, when one in-
tends to call a meeting, he needs to select participants
and to provide the further information about the meet-
ing that consist of a timeframe during which the meet-
ing must be held, the duration of the meeting, and
the subject of the meeting. Figure 2 shows a sam-
ple screen-shot of selecting participants and inputting
information about a meeting. One can select partic-
ipants through dragging a node from the tree in the
Available Participants pane and dropping
it into the Selected Participants pane. If a
dragged and dropped node is leaf then one person cor-
responds to the node is added to the participants list,
otherwise persons correspond to descendant leaves of

WEBIST 2006 - INTERNET TECHNOLOGY

118



the dropped node are added to the participants list at
once. An :off suffix on a leaf node indicates that
the corresponding person is in the offline status, so
that he cannot be selected as a participant. When the
OK button is pressed, a scheduling agent and query
agents for each participant are created. Each query
agent migrates to one participant’s computer and asks
his schedule by opening a schedule window as shown
in Fig. 3. Through this window, one can input his
schedule; select a range of hour-cells by holding down
the left mouse button and dragging the mouse over the
cells; right-click on the cells; choose whether he will
be free, tentative, or busy in the pop-up se-
lection box. Only an inviter of a meeting can choose
the fourth option preferable. Note that a blank
cell means that the user is free on that time therefore
there is no need to select the free option ordinarily.
One should select it only when he intends to overwrite
other options.

Figure 2: Window for selecting participants and inputting
information about a meeting.

4 EXPERIMENTS

This section presents experimental results obtained
from the implementation of the proposed system de-
scribed in the previous section.

The experimental environment consists of two PCs
with Intel Pentium4 3.0GHz processor and 1GB of
RAM. They are connected through 1000Base-T Eth-
ernet and are running on Turbolinux 10 operating sys-
tem whose kernel version is 2.6.0.

Figure 3: User A inputs his schedule.

As an example, we will examine how a schedul-
ing agent negotiates with participants when user A
intends to hold a two hours meeting with user B be-
tween July 5th and July 6th. We assume that user A
and user B inputted their schedules shown in Table 1.
A blank cell in Table 1 means that user A or user B is
free on that time.

Table 1: Schedules of user A and user B between July 5 and
July 6.

July 5 July 6
user A user B user A user B

9 tentative tentative busy
10 tentative tentative busy
11 busy
12 tentative busy
13 tentative busy
14 busy busy
15 preferable busy busy
16 preferable busy busy

Table 1 shows that some negotiation is needed to
hold a two hours meeting between July 5th and July
6th. Table 2 shows durations to be selected as can-
didates for negotiation in the order of priority. A
scheduling agent negotiates with user A and/or user B
to open the schedule in that order. Note that it avoids
useless negotiation. For example, If one of user A
and user B denies to open the schedule on the third
duration in Table 2, it does not ask the other user for
opening the schedule since the negotiation succeeds
only if both two persons agree to open the schedule.
In addition, if a negotiation on the third duration fails,
it does not intend to negotiate on the fourth duration

MEETING ARRANGEMENT SYSTEM BASED ON MOBILE AGENT TECHNOLOGY

119



in Table 2 since there is no chance that the negotiation
succeeds.

Table 2: Possible durations of the meeting on July 5 sorted
in the order for negotiation.

Duration Number of Number of
related hours related persons

11–13 1 1
12–14 2 1
10–12 2 2
9–11 4 2

5 CONCLUSION

In this paper, a meeting arrangement system based on
mobile agent technology is presented to reduce time
and effort on meeting scheduling. With the proposed
system, all an inviter of a meeting has to do is to spec-
ify who should join the meeting, a timeframe during
which the meeting must be held, the duration of the
meeting, and the subject of the meeting. The rest is
done by agents, i.e., query agents collect all the par-
ticipants schedule, and a scheduling agents searches
the date and time available for the meeting, negoti-
ates with appropriate participants if necessary, and fi-
nally notifies the arranged date and time of the meet-
ing to all the participants. The proposed system sim-
plifies the work not only of an inviter, but also of all
participants. Instead of inputting all schedule into
a server before any meeting is intended to call, one
is requested to input only the schedule between the
timeframe of a meeting.

To make the proposed system more practical, it
is necessary to consider the priorities of participants,
i.e., the key person of a meeting must join it; on the
contrary, a meeting may be opened without persons
with low prior.

REFERENCES

Bui, H. H., Venkatesh, S., and Kireonska, D. (1996). Learn-
ing other agents’ preferences in multiagent negotia-
tion. In Proceedings of the Thirteenth National Con-
ference on Artificial Intelligence, volume 2, pages
114–119.

Cybozu (2005). Share360. http://cybozu.com/.

Garrido, L. and Sycara, K. (1996). Multi-agent meeting
scheduling: Preliminary experimental results. In Pro-
ceedings of the Second International Conference on
Multi-Agent Systems, pages 95–102. AAAI Press.

IBM (2005). Lotus notes/domino.
http://www-306.ibm.com/software/lotus/.

Jennings, N. R. and Jackson, A. J. (1995). Agent-based
meeting scheduling: A design and implementation.
IEE Electronics Letters, 31(5):350–352.

Kawamura, T., Motomura, S., and Sugahara, K. (2005). Im-
plementation of a logic-based multi agent framework
on java environment. In Hexmoor, H., editor, Pro-
ceedings of International Conference on Integration
of Knowledge Intensive Multi-Agent Systems, pages
486–491. Waltham, Massachusetts, USA.

Microsoft (2005). Microsoft exchange server.
http://www.microsoft.com/exchange/default.mspx.

Modi, P. J. and Veloso, M. (2004). Multiagent meeting
scheduling with rescheduling. In Proceedings of the
Fifth Workshop on Distributed Constraint Reasoning.

Motomura, S., Kawamura, T., and Sugahara, K. (2005).
Maglog: A mobile agent framework for distributed
models. In Proceedings of the IASTED International
Conference Parallel and Distributed Computing and
Systems, pages 414–420. Phoenix, Arizona, USA.

Sen, S. and Durfee, E. H. (1994). On the design of an adap-
tive meeting scheduler. In Proceedings of the Tenth
IEEE Conference on Artificial Intelligence for Appli-
cations, pages 40–46.

WEBIST 2006 - INTERNET TECHNOLOGY

120


