
Notice for the use of this material The copyright of this material is retained
by the Information Processing Society of Japan (IPSJ). This material is
published on this web site with the agreement of the author (s) and the
IPSJ. Please be complied with Copyright Law of Japan and the Code of
Ethics of the IPSJ if any users wish to reproduce, make derivative work,
distribute or make available to the public any part or whole thereof. All
Rights Reserved, Copyright (C) Information Processing Society of Japan.
Comments are welcome. Mail to address editj@ipsj.or.jp, please. 1

Regular Paper

Logic-Based Mobile Agent Framework with a Concept of “Field”

Shinichi Motomura,† Takao Kawamura†

and Kazunori Sugahara†

A new logic-based mobile agent framework named Maglog is proposed in this paper. In
Maglog, a concept called “field” is introduced. By means of this concept, the following
functions are realized: (1) agent migration, which is a function that enables agents to migrate
between computers, (2) inter-agent communication, which is indirect communication with
other agents through the field, (3) adaptation, which is a function that enables agents to
execute programs stored in the field. We have implemented Maglog in a Java environment.
The program of an agent, which is a set of Prolog clauses, is translated into Java source code
by our Maglog translator, and is then compiled into Java classes by a Java compiler. The
effectiveness of Maglog is confirmed through descriptions of two applications: a distributed
e-learning system and a scheduling arrangement system.

1. Introduction

Mobile agent technology is attracting atten-
tion as a key technology for developing dis-
tributed systems. For realization of mobile
agent systems, the following functions need to
be implemented:
(1) Agents should be able to migrate from

one computer to another with data and
programs.

(2) Agents should be able to communicate
with other agents.

(3) Agents should be able to adapt them-
selves to environments such as the com-
puters they belong to. Such adaptation
is accomplished by absorbing data and
programs from their environments.

Accordingly, a concept called “field” is pro-
posed as a means of realizing the above func-
tions in a simple manner.

Agents communicate with other agents indi-
rectly through a field and adapt themselves to
the environment by importing data and pro-
grams stored in the field. The functions realized
by the field can be summarized as follows:
(1) Migration: A function that enables

agents to migrate between computers.
(2) Inter-agent communication: Indirect

communication with other agents through
the field. That is, an agent is able to im-
port data or programs stored in the field
by other agents.

(3) Adaptation: A function that enables
agents to execute programs stored in the

† Tottori University

field.
To implement a mobile agent system with the

concept of field, programs that describe the be-
havior of the agent are written in Prolog in our
system. Since Prolog is a logic programming
language and has a powerful pattern-matching
mechanism, agents are able to search for data
and programs stored in fields easily. This pow-
erful pattern-matching mechanism of Prolog is
called “unification.” Unifications between com-
puters are realized to construct a mobile agent
system.

This paper proposes a mobile agent frame-
work named Maglog that implements the
above-mentioned functions in a Java environ-
ment. Java is adopted because of its huge class
libraries for building network applications. It
should also be noted that Java’s goal of “write
once, run anywhere” is desirable for mobile
agent systems.

Several mobile agent frameworks have been
realized as sets of class libraries for Java, such as
Aglets1), MobileSpaces2), and Bee-gent3). Each
of them, when used in combination with a Pro-
log interpreter written in Java, such as Net-
Prolog4) or Jinni5), has some similarity to Ma-
glog. The main difference between these com-
binations and Maglog is the class of mobility.
They have weak mobility, since only their clause
databases are migrated. In Maglog, all of the
execution state, including the execution stack,
can be migrated. That is to say, Maglog has
strong mobility, and consequently agents in Ma-
glog can backtrack and unify variables across
the network. That makes programs in Maglog
simple and understandable.

2

Except for Maglog, MiLog6) is the only logic-
based framework with strong mobility. How-
ever, it does not have a concept simular to the
field presented in this paper.

Flage7) uses a similar concept to Maglog’s
fields, but Flage’s fields cannot be used as
a medium of synchronous communication be-
tween agents. Furthermore, in Flage, unifica-
tions between two fields are not supported.

2. Overview of Maglog

Figure 1 shows an overview of a mobile
agent system in Maglog. In the figure, two
computers (hereafter referred to as hosts) are
connected to a network and agent servers are
running on each of them to activate agents and
to provide fields for them.

The remainder of this section describes the
three basic components of Maglog, namely,
agent, agent server, and field.

2.1 Agent
An agent has the following functions:

(1) Execution of a program that describes
the behavior of the agent,

(2) Execution of procedures stored in a field
where the agent is currently located,

(3) Communication with other agents through
a field,

(4) Creation of agents and fields,
(5) Migration to another host in a network.

An agent of Maglog executes its program
sequentially. The class of agent migration is
strong migration, which involves the transpar-
ent migration of an agent’s execution state as
well as its program and data. In order to re-
alize unifications between computers, Maglog
supports strong mobility.

For creation of a child agent, a parent agent
executes the following built-in predicate:

create(AgentID,File,Goal)
In this predicate, File corresponds to the file-

Agent

Field

Agent Server

Host

NetworkMigration

Fig. 1 Overview of a mobile agent system in Maglog.

name in which the behavior of the agent is de-
scribed. If the execution of the predicate is
successful, an agent is created and its globally
unique identifier AgentID is returned. The cre-
ated agent immediately executes the goal speci-
fied by the argument Goal and disappears when
the execution is accomplished.

An agent can obtain its identifier by execut-
ing the following built-in predicate.

get id(Agent)
Each agent contains Prolog program and its

interpreter. The initial behavior of the agent is
described in the Prolog program given by File
in the predicate of its creation. Since Prolog
treats programs and data identically, the agent
behavior might be modified during execution.

Figure 2 shows an example of an agent’s be-
havior. The program of agentA is assumed to
contain a clause
in((clause(p(x),Y),assert(p(X):-Y)),
fieldA). The behavior of agentA can be de-
scribed as follows:
(1) agentA enters fieldA.
(2) agentA executes a predicate

clause(p(X),Y) and retrieves a clause
whose head matches p(X) from fieldA as
a result. Here Y is bound to q(X),r(X)
which is the body of the clause.

(3) agentA executes a predicate
assert(p(X):-Y), and then a clause
p(X):-q(X),r(X) is added to its own
program.

That is to say, an agent is able to import clauses
from fields so that it can change its behavior
dynamically.

agentA

fieldA

p(X) :- q(X), r(X).

in((clause(p(X), Y), assert(p(X):-Y)), fieldA).

in((clause(p(X),Y),
 assert(p(X):-Y)),fieldA).

in((clause(p(X),Y),
 assert(p(X):-Y)),fieldA).

p(X):-q(X),r(Y).

Fig. 2 Dynamic change in a program that describes
the behavior of the agent by asserting a new
clause.

3

The built-in predicate in/2 will be described
in Section 3.1. Here the notation Name/Arity
is the predicate indicator (hereafter referred as
PredSpec) which refers to one or several predi-
cates. Name and Arity correspond to the name
of a predicate and its number of argument’s re-
spectively.

2.2 AgentServer
An agent server is a runtime environment

for agents that provides required functions for
agents. The above-mentioned predicates, such
as create/3 and get id/1, are examples of
functions.

An agent server creates and deletes agents.
An agent server assigns an AgentID to the cre-
ated agent. An AgentID consists of a host’s IP
address and the time at which the agent was
created, and is thus globally unique. In addi-
tion, an agent server provides an agent migra-
tion function. When an agent migrates from
hostA to hostB, the agent server on hostA sus-
pends the agent’s execution and transports the
agent to hostB. After that, the agent server on
hostB resumes execution of the agent.

An agent server also manages fields and pro-
vides functions that enable an agent to utilize
them.

2.3 Field
A field is an object managed by an agent

server to hold Prolog clauses, and is created
when an agent executes the following built-in
predicate:

fcreate(Field)
If Field is an unbound variable, a field with a
unique identifier is created, and its identifier is
bound to the argument Field. If Field is a
symbol, the action of this predicate depends on
whether the field whose identifier is the symbol
exists or not. If it does not exist, a field whose
identifier is the symbol is created; otherwise,
nothing is done.

Important features of Maglog realized through
the concept of field will be described in the fol-
lowing section.

3. Features Realized through the Con-
cept of Field

3.1 Predicate Library
An agent enters a field and executes a goal

by using the following built-in predicate:
in(Goal, Field)

The agent exits Field automatically whether
the execution succeeds or not. This built-in
predicate is re-executable; that is, each time

fieldA

fieldB

Field = fieldA

Field = fieldB

print(X) :-
 ...

print(X) :-
 ...

Hello!
window

agent Hello!

in(print(’Hello!’),Field).

Fig. 3 Dynamic change in an agent’s behavior
according to the field.

it is executed, it attempts to enter the field
and executes the next clause that matches Goal.
When there are no more clauses to execute, this
predicate fails.

When an agent enters a field, it imports the
procedures of the field and combines them with
its own procedures. Therefore, an agent does
not need to contain all of the program by it-
self to solve a problem, but instead enters the
fields that provide the necessary procedures.
An agent can change its behavior dynamically
according to the field it enters. In this way, an
agent can adapt its behavior to its environment.

Figure 3 shows an example in which an
agent executes different print/1 predicates in
fieldA and fieldB. The execution of the goal
print(’Hello!’) sends the string “Hello!” to
a printer when the agent is in fieldA; on the
other hand, the same goal creates a new window
containing the string “Hello!” when the agent
is in fieldB, because fieldA and fieldB provide
appropriate procedures for their output devices.

3.2 Inter-agent Communication
Agents entering the same field can be consid-

ered as forming a group. The procedures within
the field are shared by the agents. Moreover,
by adding or removing procedures within the
field, agents can influence the behavior of other
agents.

Updating of procedures in a field can be per-
formed by means of the following built-in pred-
icates:

fasserta(Clause, Field)
fassertz(Clause, Field)
fretract(Clause, Field)

The first argument Clause of these predicates
is a clause to be added or removed from the
field specified by the second argument Field.
fasserta/2 inserts the clause in front of all the
other clauses with the same functor and arity.

4

2.Create

1.Create

3.Write

4.Read

fieldA

main(Field) :-
 calculate(X),
 get_id(ID),
 fassert(ans(ID, X), Field).
calculate(X) :- ...

main :-
 fcreate(’fieldA’),
 create(ID, ’CHILD’,
 main(’fieldA’)),
 fretract(ans(ID, X), ’fieldA’).

PARENT

CHILD

ans(ID, X).

Fig. 4 Agents can communicate synchronously
through a field.

Functor and arity mean the name of a predicate
and its number of arguments, respectively. On
the other hand, fassertz/2 adds the clause af-
ter all the other clauses with the same functor
and arity. fretract/2 removes the next unifi-
able clause that matches the argument from the
field. This built-in predicate is re-executable,
that is, each time it is executed it attempts to
remove the next clause that matches its argu-
ment. If there are no more clauses to remove,
then this predicate fails.

By using these predicates, an agent can com-
municate with other agents not only asyn-
chronously but also synchronously. An agent
has two modes for execution of procedures
stored in a field. In the fail mode, the exe-
cution fails when an agent attempts to execute
or to retract a non-existent clause in a field.
In the block mode, an agent that attempts to
execute or to retract a non-existent clause in a
field is blocked until another agent adds the tar-
get clause to the field. For agents in the block
mode, a field can be used as a synchronous com-
munication mechanism such as a tuple space in
the Linda model8).

Figure 4 shows an example of synchronous
inter-agent communication.
(1) PARENT creates fieldA.
(2) PARENT creates CHILD and makes it

execute main(’fieldA’). PARENT at-
tempts to remove the clause that matches
ans(ID,X) from fieldA and PARENT is
blocked until a unifiable clause is added
by CHILD.

(3) CHILD executes calculate(X) and the
result is bound to X. The identifier of
CHILD is bound to ID by the execution of

f(3).
f(5).

fieldA fieldB

hostB

f(5).
f(6).

X=5?
yes

backtracking

X=3

X=3?
no1

2 6

3

4

7

hostA

AS1 AS2

in(f(X), fieldA@AS1),
in(f(X), fieldB@AS2).

X=5

5

Fig. 5 Backtracking and unification between two
hosts.

the built-in predicate get id(ID). CHILD
adds ans(ID,X) to fieldA.

(4) PARENT wakes up and removes ans(ID,X)
from fieldA.

3.3 Agent Migration
Each agent server has a globally unique iden-

tifier composed of the server’s IP address and
defined name.

If the second argument of the predi-
cates in/2, fasserta/2, fassertz/2, and
fretract/2 is specified in the form of
Field@ServerID, the agent executing this
predicate migrates to the host in which the
agent server specified by ServerID runs, and
enters Field. The agent returns to the host lo-
cated before the migration automatically as it
exits the field.

Figure 5 shows that the agent matches f(X)
with clauses in two fields in hostA and hostB.
As shown in Fig. 5, this attempt proceeds
through performing the following steps and suc-
ceeds:
(1) An agent enters fieldA in hostA and exe-

cutes the goal f(X). Consequently, X is
bound to 3, because f(3) is the first
clause that matches f(X).

(2) The agent migrates to hostB and enters
fieldB.

(3) The agent executes the goal f(3). This
attempt fails, since there is no clause that
matches f(3).

(4) The agent returns to hostA and enters
fieldA automatically.

(5) The agent attempts to execute the next
clause that matches with f(X). X is there-
fore bound to 5.

(6) The agent migrates to hostB and enters
fieldB again.

5

(7) The agent executes the goal f(5). This
attempt succeeds, since the clause f(5)
is in fieldB.

4. Implementation

We have implemented Maglog in a Java envi-
ronment by extending PrologCafé9), which is a
Prolog-to-Java source-to-source translator sys-
tem.

The program of an agent, which is a set of
Prolog clauses, is translated into Java source
code by our Maglog translator, and is then com-
piled into Java classes by a Java compiler. As
mentioned in Section 2.1, an agent can import
Prolog clauses from a field at run time. These
clauses are interpreted by the Prolog interpreter
included in an agent instead of being compiled
into Java classes. An agent runs as a thread in
a process named an agent server.

Agent servers have an XML-RPC interface,
which is accessible from applications written
in any other language with support for XML-
RPC.

The following operations from other systems
are available through XML-RPC:
(1) Create and kill agents,
(2) Create and delete fields,
(3) Assert clauses into fields and retract

clauses from fields,
(4) Get a list of names of fields,
(5) Get a list of IDs of agents currently ex-

isting.
Figure 6 shows a screen-shot of the user

interface program for manipulation of agent
servers. It can create/kill agents and cre-
ate/delete fields, and can browse both the con-
tents of fields and the outputs of agents.

Implementation of Maglog features realized
through the concept of field is described in the

Fig. 6 GUI for an agent server.

remainder of this section.
4.1 Predicate Library
As shown in Fig. 7, a field is implemented as

a Java Hashtable; that is, procedures in a field
are put into a hashtable. A key is PredSpec of
a procedure, and the value is a set of objects
representing the procedure whose predicate in-
dicator is PredSpec.

When an agent executes a predicate in in/2,
it searches for the predicate by specifying Pred-
Spec from the hashtables of fields it is currently
in, and interprets the located values.

In order to improve the execution rate, the
concept of a static field is introduced into Ma-
glog. It stores read-only procedures compiled
into Java classes before the agent server to
which the field belongs starts.

A static field is implemented as a Java Class
Loader, which receives PredSpec and loads the
bytecodes of the class for the corresponding pro-
cedure.

According to the experiments, an agent can
execute a clause in a static field about 250 times
faster than in an ordinary field.

4.2 Inter-agent Communication
As mentioned in Section 3.2, an agent that

attempts to execute or to retract a non-existent
clause in a field simply fails in the fail mode,
while an agent in the block mode is blocked by
calling the Java wait method.

When another agent adds one clause to a
field, the blocked agents in the field are wo-
ken up by the Java notifyAll method and try
to execute their goals. The agents whose target
clause has been added restart, while the remain-
der of the woken-up agents are blocked again.

4.3 Agent Migration
The migration of an agent is realized by using

a Remote Procedure Call (RPC) as follows:
(1) The source agent server encodes the

agent as the argument of an RPC.
(2) The source agent server obtains the

serverID of the destination agent server
from the second argument of the pred-

Fig. 7 Structure of a field.

6

icates in/2, fasserta/2, fassertz/2,
and fretract/2.

(3) The source agent server sends an RPC
request to the destination agent for invo-
cation of the receiveAgent method.

(4) The destination agent server decodes the
argument of the RPC and restarts the
decoded agent.

Two mechanisms for RPC are implemented:
RMI and XML-RPC. RMI is superior to XML-
RPC from the viewpoint of the migration speed.
On the other hand, XML-RPC is more firewall-
friendly than RMI. HTTP connections used as
the transport connections for XML-RPC are
usually permitted through firewalls, while RMI
connections are not usually permitted. In Ma-
glog, both mechanisms are provided and users
can choose whichever they prefer.

In order to reduce the traffic, a whole agent
is not migrated initially. That is, Java classes
compiled from Prolog predicates of an agent are
transported on demand from the agent server
on which the agent has been created.

5. Experiments

This section presents the experimental results
for the execution time and amount of memory
usage. In the experiments, two PCs with an In-
tel Xeon 3.4 GHz processor and 1 GB of RAM
were connected via a 1000Base-T network. Tur-
boLinux Server10 was used as the operating
system. The version of the Java language run-
time environment was 1.4.2. The performance
of agents was examined from the following view-
points:
(1) Creation of an empty agent,
(2) Migration of an empty agent,
(3) Reading 500 characters from a field,
(4) Writing 500 characters into a field.
Each experiment was repeated 100 times, and
the average times are summarized in Table 1.
Table 2 shows the amount of memory usage of
an agent server, of an empty agent, and of an
agent with 60 clauses.

In Fig. 8, programs contained in agentA and
in fieldA are shown. Table 3 shows execution
times in the case where fieldA is an ordinary
field compared with the case where fieldA is
a static field. The experiments were repeated
10,000 times and the total times were summa-
rized. We can confirm that the agent execution
time in a static field is much faster than in an
ordinary field.

Table 1 Execution time of agent creation, agent
migration, and reading/writing characters
from/into a field.

Agent
creation

Agent
migration

Reading
from a field

Writing
into a field

7.30 msec 338.21 msec 0.05 msec 0.08 msec

Table 2 Amount of memory usage.

Agent server Empty agent Agent with
60 clauses

1037 KB 413 KB 775 KB

Fig. 8 Programs for comparison of the execution times
in the case where fieldA is an ordinary field
compared with the case where fieldA is a static
field. (a) The program is contained in agentA;
(b) the program is in fieldA.

Table 3 Comparison of the execution times in the case
where fieldA is an ordinary field compared
with the case where fieldA is a static field.

Ordinary field 9,341 msec
Static field 36 msec
Ratio
(ordinary/static)

259

6. Applications

In this section, two applications are described
to confirm the effectiveness of Maglog.

6.1 Distributed e-Learning System
A distributed e-learning system10),11) for

asynchronous Web-based training was built us-
ing Maglog. This system allows students to
study by themselves in their own time and fol-
lowing their own schedules, without any live in-
teraction with a teacher.

Our distributed e-learning system consists of
exercise agents and user interface programs.
Each exercise agent includes not only exercise
data but teacher’s functions for marking user’s
answers, giving the correct answers, and show-
ing some extra information. Every student’s
computer receives some exercise agents from
another computer when it joins the system and
takes on the responsibility of sending appropri-

7

Fig. 9 Procedure for providing an exercise for a
remote user.

ate exercise agents to requesting computers.
Figure 9 shows one part of the key codes

in this application. This procedure is a part
of an exercise agent. This is the procedure for
providing an exercise for a remote user. In ex-
ecuting this procedure, the following steps are
performed.
(1) An agent retrieves a clause request/2

which another agent added from fieldA.
Here, Host and Field are the host name
and field name of the student’s computer.

(2) The agent migrates to Host and enters
Field, and provides an exercise for the
student. When the student finishes the
exercise, the agent returns to the host it
belongs to automatically.

(3) The agent recursively executes this pro-
cedure.

In this procedure, two types of field, fieldA
and Field are used. fieldA in line 1 of Fig. 9
is used as a medium of asynchronous commu-
nication between agents, and Field in line 2 is
used as an abstraction of migration.

6.2 Scheduling Arrangement System
The Mobile-Agent-Based Scheduling Ar-

rangement System12),13) arranges a meeting
schedule without human negotiations. It con-
sists of negotiation agents and user interface
programs. Once a convener convenes a meet-
ing through the system, agents move around
the meeting participants and negotiate with
them semi-automatically. The distinguishing
features of this system are as follows:
(1) Any user of this system can be a con-

vener.
(2) The number of computers participating

in this system can be changed flexibly.
(3) Neither the schedules of the participants

nor the programs for negotiation are con-
centrated on a particular server. Instead,
agents the collect schedules of the partic-
ipants and negotiate with them.

Figure 10 shows one part of the key codes
in this application. This procedure is a part of
a negotiation agent which arranges a meeting

Fig. 10 Procedure for asking participants to open
their schedules during a particular period.

schedule. An agent asks participants to open
their schedules by executing this procedure dur-
ing Period. In executing this procedure, the
following steps are performed.
(1) A negotiation agent migrates to Host

and enters Field to add the clause
request open/1 to Field. An agent on
Host retrieves this clause and asks the
users to open their schedules.

(2) The former agent retrieves the negotiated
result reply/1.

(3) The variable X is examined to recog-
nize whether the negotiation succeeded
or not. If the negotiation succeeded, step
(4) will be executed; otherwise, this pro-
cedure fails.

(4) The agent recursively executes this pro-
cedure for the remaining participants.

As in the previous example in Section 6.1,
two types of field are used in this procedure.
Field, which appears in lines 1 and 2 of Fig.
10, is used as a medium of asynchronous com-
munication and an abstraction of migration at
the same time. In addition, unification across
the network, which is one of the key features of
Maglog, is presented. The variable X is bound
to some value on Host and is unified with ok
on another computer. In this example, if the
unification fails, the whole procedure will fail,
because of a cut operator in line 3 of Fig. 10.
However, in the absence of the cut operator, the
agent would return Host automatically and try
to retrieve another clause matching reply/1.
These features of unification and backtracking
across the network simplify the control flows of
an agent’s program.

7. Conclusion

A new framework named Maglog for mobile
agent systems was designed and developed in a
Java environment. In Maglog, a concept called
“field” is introduced, and is used to realize mi-
gration, inter-agent communication, and adap-
tation functions.

The effectiveness of the proposed framework

8

was confirmed through descriptions of two ap-
plications: a distributed e-learning system and
a scheduling arrangement system.

As regards the issue of error handling, Ma-
glog currently handles only one type of error,
which occurs when an agent intends to migrate
to a host. Handling of errors after or dur-
ing migration remains a task for the future.
Security issues are indispensable problems for
distributed applications using mobile agents.
In Maglog, insufficient programmable security
functions are provided, because security issues
are vast. These functions will be added in the
future. In addition, to make programs more
practical, it is necessary to provide a program
development environment, such as debugging
and testing tools.

References

1) Lange, D. B. and Oshima, M.: Programming
and Deploying Java Mobile Agents with Aglets ,
Addison Wesley (1998).

2) Satoh, I.: MobileSpaces: A Framework for
Building Adaptive Distributed Applications
Using a Hierarchical Mobile Agent System,
Proc. IEEE International Conference on Dis-
tributed Computing Systems , IEEE Press, pp.
161–168 (2000).

3) Kawamura, T., Hasegawa, T., Ohsuga, A. and
Honiden, S.: Bee-gent: Bonding and Encapsu-
lation Enhancement Agent Framework for De-
velopment of Distributed Systems, Systems and
Computers in Japan, Vol. 31, No. 13, pp. 42–56
(2000). John Wiley & Sons, Inc.

4) de Carvalho, C. L., Pereira, E. C. and da
SilvaJulia, R.M.: NetProlog: A Logic Program-
ming System for the Java Virtual Machine,
Proc. 1st International Conference on Enter-
prise Information Systems , pp.591–598 (1999).
Setubal, Portugal.

5) Tarau, P.: Inference and Computation Mo-
bility with Jinni, The Logic Programming
Paradigm: A 25 Year Perspective (Apt,
K., Marek, V. and Truszczynski, M.(eds.)),
Springer, pp. 33–48 (1999).

6) Fukuta, N., Ito, T. and Shintani, T.: MiLog:
A Mobile Agent Framework for Implementing
Intelligent Information Agents with Logic Pro-
gramming, Proc. 1st Pacific Rim International
Workshop on Intelligent Information Agents ,
pp. 113–123 (2000).

7) Kumeno, F., Ohsuga, A. and Honiden, S.:
Flage: A Programming Language for Adaptive
Software, IEICE Trans. Inf. & Syst., Vol. E81–
D, No. 12, pp. 1394–1403 (1998).

8) Carriero, N. and Gelernter, D.: Linda in Con-

text, Comm. ACM , Vol. 32, No. 4, pp. 444–458
(1989).

9) Banbara, M. and Tamura, N.: Translat-
ing a Linear Logic Programming Language
into Java, Proc. ICLP’99 Workshop on Par-
allelism and Implementation Technology for
(Constraint) Logic Programming Languages
(M.Carro, I.Dutra et al.(eds.)), pp. 19–39
(1999).

10) Kawamura, T. and Sugahara, K.: A Mobile
Agent-Based P2P e-Learning System, IPSJ
Journal , Vol. 46, No. 1, pp. 222–225 (2005).

11) Motomura, S., Kawamura, T., Nakatani, R.
and Sugahara, K.: P2P Web-Based Train-
ing System Using Mobile Agent Technologies,
Proc. 1st International Conference on Web In-
formation Systems and Technologies , pp. 202–
205 (2005). Miami, USA.

12) Kinosita, S., Kawamura, T. and Sugahara,
K.: Mobile Agent Based Schedule Arrangement
System, Proc. 5th IEEE Hiroshima Student
Symposium (HISS), pp. 205–206 (2003).

13) Motomura, S., Kagemoto, K., Kawamura, T.
and Sugahara, K.: Meeting Arrangement Sys-
tem Based on Mobile Agent Technologies, IPSJ
Journal , Vol. 46, No. 12, pp. 3123–3126 (2005).

(Received July 11, 2005)
(Accepted January 6, 2006)

Shinichi Motomura was
born in 1973. He received his
B.Eng. and M.Eng. degrees
in Computer Engineering from
Toyohashi University of Tech-
nology, Japan, in 1995, 1997,
respectively. He is currently a

Ph.D. student in Tottori University. His re-
search interests include multi-agent systems
and distributed systems.

9

Takao Kawamura was born
in 1965. He obtained his
B.Eng., M.Eng. and Ph.D. de-
grees in Computer Engineering
from Kobe University, Japan, in
1988, 1990 and 2002, respec-
tively. Since 1994 he had been

in Tottori University as a research associate
and has been in the same University as an as-
sociate professor in the Faculty of Engineering
since 2003. His current research interests in-
clude multi-agent systems and distributed sys-
tems. He is a member of IEICE, JSSST, and
JSAI.

Kazunori Sugahara re-
ceived the B.Eng. degree from
Yamanashi University, Japan, in
1979 and M.Eng. degree from
Tokyo Institute of Technology,
Japan, in 1981. In 1989, he re-
ceived the D.Eng. degree from

Kobe University, Japan. From 1981 to 1994,
he was on the staff of the Department of Elec-
tronic Engineering, Kobe City College of Tech-
nology. In 1994, he joined Tottori University
as an associate professor of the Department of
Electrical and Electronic Engineering and he is
a professor of the department of Information
and Knowledge Engineering. His current inter-
est lies in the fields of computer architectures
and hardware realizations of image processing
algorithms. Dr. Sugahara is a member of IEEE
and IEICE.

