
MAGLOG : A MOBILE AGENT FRAMEWORK
FOR DISTRIBUTED MODELS

Shinichi MOTOMURA
The Graduate School of Engineering, Tottori University

Tottori University
4–101, Koyama-Minami

Tottori, JAPAN
motomura@tottori-u.ac.jp

Takao KAWAMURA, and Kazunori SUGAHARA
Department of Information and Knowledge Engineering

Tottori University
4–101, Koyama-Minami

Tottori, JAPAN
{kawamura,sugahara}@ike.tottori-u.ac.jp

ABSTRACT
A novel distributed model characterized by the following
features is proposed in this paper. Each computer has client
functions concurrently with server functions assigned. Ev-
ery computer is able to join and to leave the system flexi-
bly. While server functions of the system do not change as
a whole, they are shared on each computer flexibly. That
is, the server functions of each computer vary according to
the conditions of computers joined to the system.

To implement our model, the new framework named
Maglog for mobile agent systems is designed and devel-
oped on Java environment. In Maglog, a concept called
“field” is introduced. By using this concept, the following
functions are realized. Firstly, the agent migration which is
the function that enables agents to migrate between com-
puters. Secondly, the inter-agent communication which is
the indirect communication with other agents through the
field. That is, an agent is able to import data or programs
that other agents stored into the field. Finally, the adap-
tation which is the function that enables agents to execute
programs stored in the field.

The effectiveness of the proposed model and Maglog
are confirmed through the demonstrations of two applica-
tions: the distributed e-Learning system and the schedule
arrangement system.

KEY WORDS
Distributed Software Systems and Applications, Mobile
Agent, P2P, Java

1 Introduction

In the construction of network application systems, the
client/server model is widely adopted. Client comput-
ers are able to utilize the services fulfilled by a server
in this model. It is easy to construct systems based on
the client/server model, however, the following problems
should be concerned carefully. Firstly, if the number of
clients increases, the load of the server will be heavy and a
response time will go down. Secondly, if a server crushes,
all services will be stopped. To solve these problems, sys-
tems consist of several servers which manage identical ser-
vices have been developed. However, this solution is effec-

tive within a certain number of clients. Similar problems
will occur again when the number of client computers in-
creases more. In this paper, a novel distributed model based
on mobile agent technologies is proposed. The proposed
model is characterized by the following features.

1. Each computer has client functions concurrently with
server functions assigned.

2. Every computer is able to join and to leave the system
flexibly.

3. While server functions of the system do not change as
a whole, they are shared on each computer flexibly.
That is, the server functions on each computer vary
according to the conditions of computers joined to the
system.

In ordinal P2P models, the functions above are equipped
except the last one, which is tried to be equipped in our
model.

In order to implement our model, mobile agent tech-
nologies are suitable. In our model, agents are able to have
client and server functions simultaneously, and to migrate
between computers with data and programs. For realiza-
tion of the mobile agent systems, the following functions
are required to be implemented.

1. Agents should be able to migrate from one computer
to another with data and programs.

2. Agents should be able to communicate with other
agents.

3. Agents should be able to adapt themselves to environ-
ments such as computers they belong to. The adapta-
tion is accomplished by taking data and programs of
the environments into themselves.

Considering the above points, a distributed model
based on agent technologies and a concept of the “field”
are proposed. The field is utilized to realize the required
functions simply.

Agents communicate with other agents indirectly
through the field and adapt themselves to the environment
by importing data and programs stored in the field. The
functions realized by the field are summarized as follows.

466-165 414

debbie

Agent

Field

Agent Server

Host

NetworkMigration

Figure 1. Overview of a mobile agent system on Maglog.

1. Migration: Function that enables agents to migrate be-
tween computers.

2. Inter-agent communication: Indirect communication
with other agents through the field. That is, an agent
is able to import data or programs that other agents
stored in the field.

3. Adaptation: Function that enables agents to execute
programs stored in the field.

For the implementation of the mobile agent system
with the concept of the field, programs that describe be-
havior of the agent are written in Prolog language in our
system. Since Prolog is logic programming language and
has powerful pattern matching mechanism, agents are able
to search data and programs stored in fields easily. This
powerful pattern matching mechanism of Prolog is called
unification. Unifications between computers are realized to
construct mobile agent system.

Although several mobile agent frameworks such as
Aglets[1], Mobilespaces[2], Jinni[3] and MiLog[4] have
been proposed, these frameworks do not have the concept
of the field. In order to realize our model, these frame-
works are insufficient because agents do not have functions
to adapt themselves to environments. Flage[5] has similar
concepts, however, they do not realize the above-mentioned
functions. Besides, it cannot realize backtracking and uni-
fication accomplished across a network.

In this paper, the mobile agent framework named Ma-
glog on Java environment is proposed to implement the
above-mentioned features. Java is adapted because of its
huge class libraries to build network applications. It also
should be noted that Java’s goal of “write once, run any-
where” is desirable for mobile agent systems.

2 Overview of Maglog

Figure 1 shows an overview of a mobile agent system on
Maglog executing an example. In the figure, two computers
(hereafter referred as hosts) are connected to a network and
agent servers are running on each of them to activate agents
and to provide fields for them.

The rest of this section describes three basic compo-
nents of Maglog, that is, agent, agent server and field.

2.1 Agent

An agent has the following functions.

1. Execution of a program that describes behavior of the
agent

2. Execution of procedures stored in a field where the
agent currently locates

3. Communication with other agents through a field

4. Creation of agents and fields

5. Migration to another host in a network. The model of
agent state migration in Maglog is strong migration
which involves the transparent migration of agent’s
execution state as well as its program and data.

For creation of a child agent, a parent agent executes
the following built-in predicate.

create(AgentID,File,Goal)

In this predicate,File corresponds to the filename in
which the behavior of the agent is described. If the execu-
tion of the predicate is successful, an agent is created and
its globally unique identifierAgentID is returned. The
created agent immediately executes the goal specified by
the argumentGoal and disappears when the execution is
accomplished.

An agent can obtain its identifier by executing the fol-
lowing built-in predicate.

get id(Agent)

Each agent contains Prolog program and its inter-
preter. Initial behavior of the agent is described in the Pro-
log program given byFile in the predicate of its creation.
Since Prolog language treats programs and data identically,
the agent behavior might be modified during execution.
For example, as shown in Fig. 2, agentA obtains a clause
’p(X):-q(X),r(X). ’ from fieldA. That is to say, an
agent is able to import clauses from fields so that it can
change its behavior dynamically.

The built-in predicatein/2 will be described in Sec-
tion 3.1. Here the notationName/Arity is the predicate
indicator (hereafter referred as PredSpec) which refers one
or several predicates.NameandArity correspond to the
name of predicate and its number of argument respectively.

2.2 AgentServer

An agent server is a runtime environment for agents and
it provides required functions for agents. The above-
mentioned predicates, such ascreate/3 andget id/1 ,
are the examples of the functions.

415

agentA

fieldA

p(X) :- q(X), r(X).

p(X) :- q(X), r(X).

in((clause(p(X), Y), assert(p(X):-Y)), fieldA).

Figure 2. Dynamic change of program that describes be-
havior of the agent by asserting a new clause.

An agent server creates and deletes agents. An agent
server assignsAgentID to the created agent.AgentID
consists of host’s IP address and the time the agent created,
so that it becomes globally unique. In addition, an agent
server also provides an agent migration function. When
an agent migrates from hostA to hostB, the agent server
on hostA suspends the agent’s execution and transports the
agent to hostB. And after that the agent server on hostB
resumes the execution of the agent.

An agent server also manages fields and provides
functions for an agent to utilize them.

2.3 Field

A field is an object managed by an agent server to hold
Prolog clauses, and it is created when an agent executes the
following built-in predicate.

fcreate(Field)

If Field is an unbound variable, a field which has a
unique identifier is created, and its identifier is bound to
the argumentField . If Field is a symbol, the action of
this predicate depends on whether the field whose identi-
fier is the symbol exists or not. If it does not exist, a field
whose identifier is the symbol is created, otherwise nothing
is done.

Important features of Maglog realized with the con-
cept of the field will be described in the following section.

3 Features realized with Field

3.1 Predicate Library

An agent enters a field and executes a goal by the following
built-in predicate.

in(Goal, Field)

The agent exits fromField automatically whether the
execution succeeds or not. This built-in predicate is re-
executable, i.e. each time it is executed, it attempts to en-
ter the field and executes the next clause that matches with
Goal . When there is no more clause to execute, this pred-
icate fails.

When an agent enters into a field, it imports proce-
dures of the field and combines them with procedures of
itself. Therefore, an agent needs not hold all of the pro-
gram by itself to solve a problem, but rather enters the ap-
propriate fields which provide necessary procedures. An
agent can change its behavior dynamically according to the
field which it entered. In this way, an agent can adapt its
behavior to the environments.

Figure 3 shows an example that an agent executes dif-
ferentprint/1 predicates in fieldA and fieldB. The exe-
cution of the goalprint(’Hello!’) sends the string
“Hello!” to a printer when the agent is in fieldA, on the
other hand, the same goal creates a new window contain-
ing the string “Hello!” when the agent is in fieldB. Because
fieldA and fieldB provide an appropriate procedure for their
output devices.

fieldA

fieldB

Field = fieldA

Field = fieldB

print(X) :-
 ...

print(X) :-
 ...

Hello!
window

agent Hello!

in(print(’Hello!’),Field).

Figure 3. Dynamic Change of agent’s behavior according
to the field.

3.2 Inter-agent Communication

Agents entering the same field can be considered of form-
ing a group. The procedures within the field are shared
by the agents. Moreover, by adding/removing procedures
within the field, agents can influence the behavior of other
agents.

Updating procedures in a field can be done by the fol-
lowing built-in predicates.

fasserta(Clause, Field)
fassertz(Clause, Field)
fretract(Clause, Field)

The first argumentClause of these predicates is a clause
to be added or removed from the field specified by the sec-
ond argumentField . fasserta/2 inserts the clause in

416

front of all the other clauses with the same functor and ar-
ity. Functor and arity mean the name of predicate and its
number of the argument respectively. On the other hand,
fassertz/2 adds the clause after all the other clauses
with the same functor and arity.fretract/2 removes
the next unifiable clause that matches with the argument
from the field. This built-in predicate is re-executable,
i.e. each time it is executed it attempts to remove the next
clause that matches with its argument. If there is no more
clause to remove, then this predicate fails.

By using these predicates, an agent can communicate
with other agents not only asynchronously but also syn-
chronously. An agent has two modes for execution of pro-
cedures stored in a field. In the fail mode, the execution
fails when an agent attempts to execute or to retract a non-
existent clause in a field. In the block mode, an agent that
attempts to execute or to retract a non-existent clause in a
field is blocked until another agent adds the target clause
to the field. For agents in the block mode, a field can be
used as a synchronous communication mechanism such as
a tuple space in Linda model[6]

Figure 4 shows an example of the synchronous inter-
agent communication.

1. PARENTcreatesfieldA .

2. PARENT creates CHILD and makes it execute
main(’fieldA’) . PARENTattempts to remove
the clause that matchesans(ID,X) from fieldA
and it is blocked until a unifiable clause is added by
CHILD.

3. CHILD executescalculate(X) and the result is
bound toX. The identifier ofCHILD is bound toID by
the execution of the built-in predicateget id(ID) .
CHILD addsans(ID,X) to fieldA .

4. PARENTwakes up and removesans(ID,X) from
fieldA .

3.3 Agent Migration

Each agent server has globally unique identifier that is com-
posed of the server IP address and defined name.

If the second argument of the predicatesin/2 ,
fasserta/2 , fassertz/2 , and fretract/2 is
specified in the form ofField@ServerID , the agent
executing this predicate migrates to the host in which the
agent server specified byServerID runs, and enters
Field . The agent returns to the host located before the
migration automatically as it exits the field.

Figure 5 shows that the agent matchesf(X) with
clauses in two fields in hostA and hostB. As shown in
Fig. 5, this attempt proceeds through performing the fol-
lowing steps and succeeds.

1. An agent enters fieldA in hostA and executes the goal
f(X) . ConsequentlyX is bound to 3, becausef(3)
is the first clause that matches withf(X) .

2.create

1.create

3.write

4.read

fieldA

main(Field) :-
 calculate(X),
 get_id(ID),
 fassert(ans(ID, X), Field).
calculate(X) :- ...

main :-
 fcreate(’fieldA’),
 create(ID, ’CHILD’,
 main(’fieldA’)),
 fretract(ans(ID, X), ’fieldA’).

PARENT

CHILD

ans(ID, X).

Figure 4. Agents can communicate synchronously through
a field.

2. The agent migrates to hostB and enters fieldB.

3. The agent executes the goalf(3) . This attempt fails
since there is no clause that matches withf(3) .

4. The agent returns to hostA and enters fieldA automat-
ically.

5. The agent attempts to execute the next clause that
matches withf(X) . X is therefore bound to 5.

6. The agent migrates to hostB and enters fieldB, again.

7. The agent executes the goalf(5) . This attempt
succeeds this time since there is the clausef(5) in
fieldB.

f(3).
f(5).

fieldA fieldB

hostB

f(5).
f(6).

X=5?
yes

backtracking

X=3

X=3?
no1

2 6

3

4

7

hostA

AS1 AS2

in(f(X), fieldA@AS1),
in(f(X), fieldB@AS2).

X=5

5

Figure 5. Backtracking and unification between two hosts.

417

4 Implementation

We have implemented Maglog on Java environment
through extending PrologCafé[7] which is a Prolog-to-Java
source-to-source translator system.

The program of an agent which is a set of Prolog
clauses is translated into Java source code with our Maglog
translator, and then it is compiled into Java classes with
a Java compiler. As mentioned in Section 2.1, an agent
can import Prolog clauses from a field at run time. These
clauses are interpreted by the Prolog interpreter included in
an agent instead of being compiled into Java classes. An
agent runs as a thread in a process named agent server.

Agent servers have an XML-RPC interface which is
accessible from applications written in any other language
with support for XML-RPC.

The following operations from other systems are
available through XML-RPC.

1. create and kill agents,

2. create and delete fields,

3. assert clauses into fields and retract clauses from
fields,

4. get a list of names of fields,

5. get a list of IDs of agents currently exist.

Figure 6 shows a screen-shot of the user interface pro-
gram for manipulation of agent servers. It can create/kill
agents and create/delete fields, and can browse both con-
tents of fields and outputs of agents.

Figure 6. GUI for an agent server.

Implementation of Maglog features realized with the
concept of the field is described in the rest of this section.

4.1 Predicate Library

As shown in Fig. 7, a field is implemented as a Java
Hashtable, i.e. procedures in a field are put in a hashtable; a

key is PredSpec of a procedure, and the value is a set of ob-
jects representing the procedure whose predicate indicator
is PredSpec.

Figure 7. Structure of a field.

When an agent executes a predicate inin/2 , it
searches the predicate by specifying PredSpec from the
hashtables of fields it currently enters and interprets the
found value.

In order to improve execution rate, the concept of
a static field is introduced into Maglog. It stores read-
only procedures compiled into Java classes before the agent
server to which the field belongs starts.

A static field is implemented as a Java Class Loader
which receives PredSpec and loads the bytecodes of the
class for the corresponding procedure.

According to experiments, an agent can execute a
clause in a static field about 250 times faster than in an
ordinary field.

4.2 Inter-agent Communication

As mentioned in Section 3.2, an agent which attempts to
execute or to retract a non-existent clause in a field simply
fails in the fail mode. While the agent in the block mode is
blocked by calling the Javawait method.

When another agent adds one clause to a field, the
blocked agents in the field are waked up by the Java
notifyAll method and try to execute their goal. The
agents whose target clause is added restart while the rest of
the wake-up agents are blocked again.

4.3 Agent Migration

The migration of an agent is realized by using a Remote
Procedure Call (RPC) as the following:

1. The source agent server encodes the agent as the argu-
ment of a RPC.

2. The source agent server gets serverID of the desti-
nation agent server from the second argument of the
predicatesin/2 , fasserta/2 , fassertz/2 , and
fretract/2 .

3. The source agent server sends a RPC request to the
destination agent for invocation ofreceiveAgent
method.

418

4. The destination agent server decodes the argument of
the RPC and restarts the decoded agent.

Two kinds of mechanisms for RPC are implemented:
RMI and XML-RPC. RMI is more superior to XML-RPC
from the viewpoint of the migration speed. On the other
hand, XML-RPC is more firewall friendly than RMI. Be-
cause XML-RPC only uses port 80 while RMI uses two
non-well-known ports. Users can choose the appropriate
mechanism from them.

In order to reduce the traffic, a whole agent is not mi-
grated initially. That is, Java classes compiled from Prolog
predicates of an agent are transported on demand from the
agent server on which the agent has been created.

5 Applications

In this section, two applications are demonstrated to con-
firm the effectiveness of the proposed model and Maglog.

1. Distributed e-Learning System[8][9]

A distributed e-Learning system for asynchronous
Web-based training has been built using Maglog. This
system allows a student to study by himself in his
own time and schedule, without live interaction of the
teacher.

Our distributed e-Learning system consists of con-
tent agents and user interface programs. Each con-
tent agent includes exercise data as well as teacher’s
functions to mark user’s answers, to tell the correct
answers and to show some extra information. Every
computer of students receives some number of con-
tent agents from another computer when it joins the
system and takes the responsibility of sending appro-
priate content agents to requesting computers. That is
to say, while a student uses the system, its computer
assumes a part of the system and plays both the role
of the client and the server.

Figure 8 is a screen-shot of the user interface pro-
gram of this e-Learning system, which is developed
in Squeak environment[10].

2. Schedule Arrangement System[11]

This system arranges meeting schedule without hu-
man negotiations. It consists of negotiation agents
and the user interface programs. Once a convener
convenes a meeting through the system, agents move
around the meeting participants and negotiate with
them semi-automatically. This system corresponds to
the proposed model as following.

(a) Any user of this system can be a convener.

(b) The number of computers participated in this
system can be changed flexibly.

Figure 8. The e-Learning system.

(c) Neither schedules of the participants nor the pro-
grams for negotiation are concentrated on a par-
ticular server. Instead, agents collect schedules
of the participants and negotiate with them.

Figure 9 is a screen-shot of this schedule arrangement
system written in Maglog and Java languages.

Figure 9. The schedule arrangement system.

6 Conclusion

A novel distributed model characterized by the following
features is proposed in this paper.

1. Each computer has client functions concurrently with
server functions assigned.

419

2. Every computer is able to join and to leave the system
flexibly.

3. While server functions of the system do not change as
a whole, they are shared on each computer flexibly.
That is, the server functions on each computer vary
according to the conditions of computers joined to the
system.

To implement our model, the new framework named Ma-
glog for mobile agent systems was designed and developed
on Java environment. In Maglog, a concept called “field” is
introduced. By using this concept, the following functions
are realized.

1. Migration: Function that enables agents to migrate be-
tween computers.

2. Inter-agent communication: Indirect communication
with other agents through the field. That is, an agent
is able to import data or programs that other agents
stored in the field.

3. Adaptation: Function that enables agents to execute
programs stored in the field.

The effectiveness of the proposed model and Maglog are
confirmed through the demonstrations of two applications:
the distributed e-Learning system and the schedule arrange-
ment system.

References

[1] Lange, D. B. and Oshima, M.:Programming and
Deploying Java Mobile Agents with Aglets, Addison
Wesley (1998).

[2] Satoh, I.: MobileSpaces: A Framework for Building
Adaptive Distributed Applications using a Hierarchi-
cal Mobile Agent System,Proceedings of IEEE Inter-
national Conference on Distributed Computing Sys-
tems, IEEE Press, pp. 161–168 (2000).

[3] Tarau, P.: Inference and Computation Mobility with
Jinni, The Logic Programming Paradigm: a 25 Year
Perspective(Apt, K., Marek, V. and Truszczynski,
M.(eds.)), Springer, pp. 33–48 (1999).

[4] N, Fukuta. T, I. and T, S.: MiLog: A Mobile Agent
Framework for Implementing Intelligent Information
Agents with Logic Programming,Proc. of the First
Pacific Rim International Workshop on Intelligent In-
formation Agents, pp. 113–123 (2000).

[5] Kumeno, F., Ohsuga, A. and Honiden, S.: Flage: A
Programming Language for Adaptive Software,IE-
ICE Transactions of Information & System, Vol. E81–
D, No. 12, pp. 1394–1403 (1998).

[6] Carriero, N. and Gelernter, D.: Linda in Context,
Communications of the ACM, Vol. 32, No. 4, pp. 444–
458 (1989).

[7] Banbara, M. and Tamura, N.: Translating a Linear
Logic Programming Language into Java,Proceed-
ings of the ICLP’99 Workshop on Parallelism and Im-
plementation Technology for (Constraint) Logic Pro-
gramming Languages(M.Carro, I.Dutra et al.(eds.)),
pp. 19–39 (1999).

[8] Kawamura, T. and Sugahara, K.: A Mobile Agent-
Based P2P e-Learning System,IPSJ Journal, Vol. 46,
No. 1, pp. 222–225 (2005).

[9] Motomura, S., Kawamura, T., Nakatani, R. and Suga-
hara, K.: P2P Web-Based Training System Using Mo-
bile Agent Technologies,Proceedings of the 1st Inter-
national Conference on Web Information Systems and
Technologies, pp. 202–205 (2005). Miami, USA.

[10] Ingalls, D., Kaehler, T., Maloney, J., Wallace, S. and
Kay, A.: Back to the Future: The Story of Squeak, A
Practical Smalltalk Written in Itself,Proceedings of
ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 318–326
(1997).

[11] Kinosita, S., Kawamura, T. and Sugahara, K.: Mo-
bile Agent based Schedule Arrangement System,Pro-
ceedings of the 5th IEEE Hiroshima Student Sympo-
sium (HISS), pp. 205–206 (2003).

420

