
LOGIC-BASED MOBILE AGENT FRAMEWORK
USING WEB TECHNOLOGIES

Shinichi Motomura, Takao Kawamura, Kazunori Sugahara
Tottori University

4–101, Koyama-Minami, Tottori 680–8552, JAPAN
Email: motomura@tottori-u.ac.jp,{kawamura,sugahara}@ike.tottori-u.ac.jp

Keywords: Mobile agent, Logic Programming language, XML-RPC.

Abstract: We have proposed Maglog which is a framework for mobile multi-agent systems. Maglog is based on Prolog,
and has the concept of field. A field is an object which can contain a knowledge base. With the concept
of field, Maglog provides a simple and unified interface for 1)inter-agent communication, 2)agent migration
between computers, and 3)utilization of data and programs on computers. An agent migrates using HTTP as
the transport protocol and XML as the encoding format itself. In this paper, we present the implementation
of Maglog on Java environment, in detail. Since we have implemented both command-line shell and GUI for
Maglog, users can choose them for their needs. In addition, through XML-RPC interface for Maglog which we
have also implemented, other systems can easily utilize Maglog. As examples, we outline several applications
developed through XML-RPC interface.

1 INTRODUCTION

Multi-agent system is drawing attention as a structural
model for many software systems including distrib-
uted systems and artificial intelligence systems. In a
multi-agent system, a number of autonomous agents
cooperates mutually and achieves given tasks. Each
agent is generated according to a given task and can
have its own situation and operates under the sit-
uation. Situation consists of states and procedures
where both of them can be dynamically changed in
general. Therefore, it becomes necessary for the agent
to dynamically hold the states and procedures (here-
after we refer them as a knowledge base). More-
over, when a number of agents are cooperating, it is
necessary for them to share knowledge bases and to
conduct knowledge communications between agents.
In addition, mobility of agents is important in multi-
agent system because of not only reducing network
latency but simplifying architecture of software sys-
tems.

We have proposed Maglog (Kawamura et al., 2003;
Kawamura et al., 2004a) which is a framework for
mobile multi-agent systems. Maglog is based on Pro-
log, and has the concept of field. A field is an object
which can contain a knowledge base. With the con-
cept of field, Maglog provides a simple and unified in-

terface for 1)inter-agent communication, 2)agent mi-
gration between computers, and 3)utilization of data
and programs on computers. In this paper, we present
the implementation of Maglog on Java environment,
in detail.

2 OVERVIEW OF MAGLOG

Figure 1: Overview of Maglog.

Figure 1 shows the overview of Maglog. An agent
runs as a thread in a process which we call an agent
server. Mobile agents of Maglog are written in Pro-
log. Agent servers have objects which hold Pro-

198

log clauses. We call them fields. Builtin predicate
in(Goal, Field) is for evaluation of a goal in a
field. An agent can enter a field by this predicate. En-
tering a field, an agent can utilize data and programs
in the field. With the concept of field, Maglog pro-
vides a simple and unified interface for 1)inter-agent
communication, 2)agent migration between comput-
ers, and 3)utilization of data and programs on com-
puters. An agent migrates using HTTP as the trans-
port protocol and XML as the encoding format itself.

2.1 Inter-agent Communication

Agents belonging to the same field can be considered
of forming a group. The knowledge within the field
is shared by the agents. Moreover, by changing the
knowledge within the field, agents can influence the
actions of other agents.

An agent can communicate with other agents
synchronously or asynchronously by reading/writing
Prolog clauses from/into fields. Updating knowledge
base in a field can be done by the following predi-
cates.

2.2 Migration

The second arguments of the following predicates can
be likeFieldName@HostAddress.
in(Goal, Field)
fasserta(Clause, Field)
fassertz(Clause, Field)
fretract(Clause, Field)
fclause(Head, Body, Field)

If a host address specified, the agent will go to the
host and access the field.

2.3 Dynamic Change of Behavior

An agent can change its behavior dynamically
through entering a field. Figure 2 shows an exam-
ple. The execution of the goalprint(’Hello!’)
sends the string “Hello!” to a printer when the agent
is in fieldA, on the other hand, the same goal creates a
new window containing the string “Hello!” when the
agent is in fieldB.

3 IMPLEMENTATION

We have implemented Maglog on Java environment
through extending PrologCafé which is a Prolog-to-
Java source-to-source translator system (Banbara and
Tamura, 1999). Both agents and after-mentioned sta-
tic fields are translated into *.java files with our Ma-
glog translator and then compiled into *.class files
with a Java compiler.

fieldA

fieldB

in(print(’Hello!’),
 Field).

Field = fieldA

Field = fieldB

print(X) :-
 ...

print(X) :-
 ...

Hello!
window

agent Hello!

Figure 2: Dynamic Change of agent’s behavior through en-
tering a field.

Two functions for agent migration have been im-
plemented: a serialize function for agent and a RPC
function. These functions have been implemented by
XML-RPC to agent servers. We show the migratation
steps below.

1. An agent server encodes a agent to a XML docu-
ment.

2. The agent server gets a reference to a destination
agent server using XML-RPC.

3. The agent server invokes the destination agent
server’s RPC with the XML document. The RPC
uses HTTP as transfer protocol.

4. The invoked agent server decodes the agent from
a XML document and continues execution of the
agent.

5. The agent server makes up to a XML document
from the execution result and returns the XML doc-
ument.

3.1 Basic Components

In this section, we describe the Java implementation
of agent, agent server, and field.

1. Agent

Figure 3: Structure of an agent.

Figure 3 shows the structure of an agent. An agent
executes predicates using Prolog Interpreter and

LOGIC-BASED MOBILE AGENT FRAMEWORK USING WEB TECHNOLOGIES

199

moves between agent servers. An agent has parent-
and-child structure and the child agent has the ad-
dress for returning to the parent agent as HomeAd-
dress.

2. Agent Server
Figure 4 shows the structure of an agent server. An
agent server creates an agent bycreateAgent
method.createAgent method creates an agent
from the agent repository, which contains classes
of predicates of agents, and pushes into the agent
scheduler. The agent scheduler has threads for
agents. WhenreceiveAgent method is in-
voked, theMaglogAgentRemoteServer re-
ceives a agent via network, decodes it from XML,
and pushes into the agent scheduler. When
sendAgentmethod is invoked, the MaglogAgen-
tRemoteServer encodes a agent to XML, and sends
to a destination agent server via network. These
transfer protocols are HTTP.

Figure 4: Structure of an agent server.

3. Field
We have implemented two kinds of field, dynamic
field and static field. Static fields are pre-compiled
predicates. Therefore agents cannot modify static
fields, however executions of predicates in static
fields are relatively fast. Executions of predicates in
dynamic fields are relatively slow however agents
can assert and retract clauses in dynamic fields.

3.2 Web Services Function

Agent Servers have Web Services are implemented
using XML-RPC. XML-RPC is a simple remote pro-
cedure calling protocol using XML as the encoding
format (Winer, 1998). For this function, it becomes
easy to use Maglog as a part of application.

Through XML-RPC, other systems can do the fol-
lowing operations.

• create and kill agents.

• create and delete dynamic fields.

• assert and retract clauses in dynamic fields.

• get a list of names of dynamic fields.

• get a list of IDs of agents.
Prolog clauses in return values and arguments of

requests are translated to data types of XML-RPC by
the agent server.

4 APPLICATIONS

We will outline several applications developed using
Maglog.

1. e-Learning System (Kawamura et al., 2004b)
An P2P-based e-Learning system has been built us-
ing Maglog. This e-Learning system has two dis-
tinguishing features. Firstly, it is based on P2P ar-
chitecture for scalability and robustness. Secondly,
each content in the system is not only data but an
agent so that it can mark user’s answers, tell the
correct answers, and show some extra information
without human instruction. Maglog plays an im-
portant role to realize the both features. Figure 5 is
a screen-shot of the user interface program. of this
e-Learning system, which is developed in Squeak
environment. This e-Learning system consists of
about 2,000 lines of Maglog code and about 4,000
lines of Squeak code.

Figure 5: The e-Learning system.

2. Schedule Arrangement System (Kinosita et al.,
2003)
This system, which has been developed using Ma-
glog, establishes and arranges meeting schedule
without human negotiations. Once a convener
convenes a meeting through the system, an agent
moves around the members of the meeting and ne-
gotiates with them automatically. This schedule
arrangement system consists of about 400 lines of
Maglog code and about 4,000 lines of Java code.

WEBIST 2005 - INTERNET COMPUTING

200

3. HECS System (Banbara et al., 2003)
Maglog is used for HECS (Heterogeneous Con-
straint Solving) system, which was supported in
part by IPA (The Information-technology Promo-
tion Agency) under grant of 2003 Exploratory Soft-
ware Project, to coordinate distributed solvers each
other.

5 RELATED WORKS

There are several mobile agent frameworks realized
as a set of class libraries for Java such as Aglets
(Lange and Oshima, 1998) and MobileSpaces (Satoh,
2000). The combination of one of them and a Prolog
interpreter/compiler written in Java such as NetPro-
log (de Carvalho et al., 1999) and Jinni (Tarau, 1999)
have some similarity to Maglog. The main difference
between the combination and Maglog is the class of
mobility. Their mobility is so-called weak mobility,
in which only its clause database is migrated. On
Maglog, all of the execution state including execu-
tion stack can be migrated (so-called strong mobility),
therefore agents on Maglog can backtrack and unify
variables during migration. That makes programs on
Maglog simple and understandable.

6 CONCLUSION

In this paper, we presented the implementation of
a mobile agent framework Maglog, in detail. With
the concept of field, Maglog provides a simple and
unified interface for 1)inter-agent communication,
2)agent migration between computers, and 3)utiliza-
tion of data and programs on computers. And through
XML-RPC interface which we have implemented,
other systems can easily utilize Maglog. Through
XML-RPC interface, several applications have been
developed.

REFERENCES

Banbara, M. and Tamura, N. (1999). Translating a linear
logic programming language into Java. In M.Carro,
I.Dutra, et al., editors,Proceedings of the ICLP’99
Workshop on Parallelism and Implementation Tech-
nology for (Constraint) Logic Programming Lan-
guages, pages 19–39.

Banbara, M., Tamura, N., Inoue, K., Kawamura, T., and
Tamaki, H. (2003). Java implementation of a distrib-
uted constraint solving system. Exploratory software
project, Information-technology Promotion Agency
Japan.

de Carvalho, C. L., Pereira, E. C., and da Silva Julia, R. M.
(1999). Netprolog: A logic programming system for
the java virtual machine. InProceedings of the 1st
International Conference on Enterprise Information
Systems, pages 591–598. Setubal, Portugal.

Kawamura, T., Kinoshita, S., and Sugahara, K. (2004a).
Implementation of a mobile agent framework on java
environment. In Gonzalez, T., editor,Proceedings
of the IASTED International Conference Parallel and
Distributed Computing and Systems, pages 589–593.
MIT, Cambridge, USA.

Kawamura, T., Kinoshita, S., and Sugahara, K. (2004b). A
mobile agent-based p2p e-learning system. In Gon-
zalez, T., editor,Proceedings of the IASTED Interna-
tional Conference Parallel and Distributed Comput-
ing and Systems, pages 873–877. MIT, Cambridge,
USA.

Kawamura, T., Kinoshita, S., Sugahara, K., and Kuwatani,
T. (2003). A logic-based framework for mobile multi-
agent systems. In Hexmoor, H., editor,Proceedings
of International Conference on Integration of Knowl-
edge Intensive Multi-Agent Systems, pages 754–759.
Boston, Massachusetts, USA.

Kinosita, S., Kawamura, T., and Sugahara, K. (2003). Mo-
bile agent based schedule arrangement system. InPro-
ceedings of the 5th IEEE Hiroshima Student Sympo-
sium (HISS), pages 205–206.

Lange, D. B. and Oshima, M. (1998).Programming and
Deploying Java Mobile Agents with Aglets. Addison
Wesley.

Satoh, I. (2000). Mobilespaces: A framework for building
adaptive distributed applications using a hierarchical
mobile agent system. InProceedings of IEEE Interna-
tional Conference on Distributed Computing Systems,
pages 161–168. IEEE Press.

Tarau, P. (1999). Inference and computation mobility with
jinni. In Apt, K., Marek, V., and Truszczynski, M.,
editors,The Logic Programming Paradigm: a 25 Year
Perspective, pages 33–48. Springer.

Winer, D. (1998). Xml-rpc specification.
http://xmlrcp.com/spec.

LOGIC-BASED MOBILE AGENT FRAMEWORK USING WEB TECHNOLOGIES

201

