
Multi Agent-based Approach for
Asynchronous Web-based Training System

Takao KAWAMURA, Shinichi MOTOMURA, Ryosuke NAKATANI, and Kazunori SUGAHARA
Tottori University

4–101, Koyama-Minami, Tottori 680–8552, JAPAN
+81 857 31 5217

{kawamura,motomura,rnakatan,sugahara}@ike.tottori-u.ac.jp

Abstract—In this paper, we present a novel framework for
asynchronous Web-based training. The proposed system has
two distinguishing features. Firstly, it is based on P2P ar-
chitecture for scalability and robustness. Secondly, all con-
tents in the system are not only data but also agents so that
they can mark user’s answers, can tell the correct answers,
and can show some extra information without human instruc-
tion. We also present a prototype implementation of the pro-
posed system on Maglog. Maglog is a Prolog-based frame-
work for building mobile multi-agent systems we have devel-
oped. The user interface program of the proposed system is
built on Squeak. Performance simulations demonstrate the
effectiveness of the proposed system.

1. INTRODUCTION

The term e-Learning covers a wide set of applications and
processes, such as Web-based training (hereafter we abbre-
viate as WBT), computer-based training, virtual classrooms,
and digital collaboration. We are concerned with asyn-
chronous WBT that allows the learner to complete the WBT
on his own time and schedule, without live interaction with
the instructor.

Although a large number of studies have been made on
asynchronous WBT[1, 2], all of them are based on the
client/server model. The client/server systems generally lack
scalability and robustness. In the recent years, P2P research
has grown exponentially. Although the current P2P systems
are famous for its file sharing ability, and the consequent le-
gal problems, P2P systems are gradually proving to be a very
promising area of research. Because they have potential for
offering a decentralized, self-sustained, scalable, fault toler-
ant and symmetric network of computers providing an effec-
tive balancing of storage and bandwidth resources.

In this paper, we present a novel framework for asynchronous
WBT. The proposed system has two distinguishing features.
Firstly, it is based on P2P architecture and every user’s com-
puter plays the role of a client and a server.

Namely, while a user uses the proposed e-Learning system,
his/her computer (hereafter we refer to such a computer as a
node) is a part of the system. It receives some number of con-
tents from another node when it joins the system and has re-
sponsibility to send appropriate contents to requesting nodes.
Secondly, each content in the system is not only data but also
an agent so that it can mark user’s answers, tell the correct
answers, and show some extra information without human
instruction.

This paper is organized in 8 sections. We describe the sup-
posed situation for the proposed system in Section 2. In Sec-
tion 3, we describe our design goals. In Section 4, we de-
scribe the design of the proposed system and a prototype im-
plementation of the system. In Section 5, we describe the user
interface program built on Squeak. In Section 6, we present
performance simulations. In Section 7, we briefly review re-
lated work. Finally, in Section 8, we describe some conclud-
ing remarks.

2. SUPPOSED SITUATION

As mentioned in the previous section, we focus on asyn-
chronous WBT, that is to say, a user can connect to the
proposed e-Learning system anytime and anywhere he/she
wants. Once connection is established, the user can obtain
exercises one after another through specifying categories of
the required exercises. User’s answers for each exercise are
marked as correct or incorrect right away. Extra information
may be provided for each answer, which can be viewed when
the correct answer is shown.

While a user uses the proposed e-Learning system, his/her
computer is a part of the system. Namely, it receives some
number of categories and exercises in them from another node
when it joins the system and has responsibility to send appro-
priate exercises to requesting nodes.

The important point to note is that the categories a node has
are independent of the categories in which the node’s user are
interested as shown in Figure 1. Figure 1 illustrates that user
A’s request is forwarded at first to the neighbor node, next
forwarded to the node which has the requested category.

Network

Physics
I want to try
an exercise
of history!

User A

English History

User B User C

1

2

Searching Message
Migration of Exercise Agent

3

Node Node

Node

Figure 1 - Proposed e-Learning system.

3. BASIC CONCEPTS

As mentioned above, the proposed system has two distin-
guishing features. Firstly, it is based on P2P architecture.
Secondly, each exercise is not only data but also an agent
so that it can mark user’s answers, tell the correct answers,
and show some extra information about the exercise. In this
section, we describe these features in detail.

P2P Aspect

All exercises in the proposed system are classified into cate-
gories such as “Mathematics / Expression / Equation”, “En-
glish / Grammar”, and “History / Rome”, etc.

When the proposed system begins, one initial node has all cat-
egories in the system. When another node joins the system, it
is received some number of categories from the initial node.
The categories are distributed among all nodes in the system
according as nodes join the system or leave the system.

We would like to emphasize that in existing P2P-based
file sharing systems such as Napster[3], Gnutella[4], and
Freenet[5] each shared file is owned by a particular node. Ac-
cordingly, files are originally distributed among all nodes. On
the other hand, the categories in the proposed system are orig-
inally concentrated. Consequently, when a new node joins
the system, not only location information of a category but
the category itself must be handed to the new node. Consid-
ering that, the P2P network of the proposed system can be
constructed as a CAN[6].

A CAN has a virtual coordinate space that is used to store
(key, value) pairs. To store a pair (K1, V1), key K1 is
deterministically mapped onto a point P in the coordinate
space using a uniform hash function. The corresponding
(key, value) pair is then stored at the node that owns the zone
within which the point P lies. In the proposed system, we let
each category be a key and let a set of exercises belonging to
the category be the corresponding value.

Mobile Agent Aspect

Generally, in addition to service to show an exercise, a WBT
server provides services to mark the user’s answers, tell the
correct answers, and show some extra information about the
exercise. Therefore, for the proposed system which can be
considered a distributed WBT system, it is not enough that
only exercises are distributed among all nodes. Functions to
provide the above services also must be distributed among
all nodes. We adopt mobile agent technology to achieve this
goal. Namely, an exercise is not only data but also an agent
so that it can mark user’s answers, tell the correct answers,
and show some extra information about the exercise.

In addition, mobile agent technology is applied to realize the
migration of categories, that is, each category is also an agent
in the proposed system.

4. DESIGN AND IMPLEMENTATION

We have implemented a prototype of the proposed system on
Maglog that is a Prolog-based framework for building mobile
multi-agent systems we have developed[7].

As shown in Figure 2, a node consists of the following agents
and a user interface program. The components of a node are
divided into two type, those that move to other node referred
as mobile components in Figure 2, and those that keep their
station referred as stational components in Figure 2.

Node Agent There is one node agent on each node. It man-
ages the zone information of a CAN and forwards mes-
sages to the category agents in the node.

Category Agent Each category agent stands for a unit of a
particular subject. It manages exercise agents in itself
and sends them to the requesting node.

Exercise Agent Each exercise agent has a question and func-
tions to mark user’s answers, tell the correct answers,
and show some extra information about the exercise.
These data are formatted in HTML.

Interface Agent There is one interface agent on each node.
It is an interface between the user interface program and
other agents.

Agents communicate with other agents through ‘field’s pro-
vided by Maglog framework. A field is kind of a preemptive
queue. Roughly speaking, the above-mentioned four kinds of
agents execute a message dispatch loop. Each message to an
agent is queued into the field owned by the agent. The user in-
terface program also communicates with the interface agent
through a field via XML-RPC[8]. Table 1 shows a partial
summary of message types.

Node
UIP : User Interface Program
 IA : Interface Agent
 NA : Node Agent
 CA : Category Agent
 EA : Exercise Agent

Mobile ComponentsMobile Components

Stationary ComponentsStationary Components

IA

UIP

...EAEA EA EA

CA CA

...
...

NA

Figure 2 - Architecture of a node.

Table 1 - Partial summary of message types.

Dispatcher Type Description
Node join To join the system.
Node leave To leave the system.
Node update To update the neighbor’s

zone information.
Node request To get an exercise agent.
Category add To add an exercise agent.
Category go To go to another node.
Category send To send an exercise

agent.
Category receive To receive an exercise

agent.
Exercise go To go to the requesting

node.
Exercise show To show a question.
Exercise mark To mark a user’s answer.
Exercise answer To show the correct an-

swer.
Exercise info To show the extra infor-

mation.
Interface retrieve To get an exercise agent.
Interface release To let an exercise agent

go home.
Interface arrived To be notified the arrival

of an exercise agent.

5. USER INTERFACE PROGRAM
Features

As mentioned above, the user interface program of the pro-
posed system has been developed through extending Scamper
which is a simple web browser runs in Squeak[9].

Figures 3, 4, 5, 6, 7, 8, 9, and 10 are screen-shots of the user
interface program. The main window of it consists of three
panes as shown in 3. Firstly, the button pane includes three
buttons to get exercises. Secondly, the category pane shows
categories of exercises. Thirdly, the exercise pane shows an
exercise. Categories are classified into a hierarchical tree
structure, as shown in Figure 4. By clicking the left button
of a mouse on the category, a user can select it. After se-
lection of the category, a user can obtain an exercise belong-
ing to the category by clicking the left button of a mouse on
one of buttons in the button pane. After a while an appropri-
ate exercise agent comes from some node and the user can
try the question as shown in Figure 5. The user can require
to mark his/her answer anytime by clicking the submit but-
ton. Figure 6 shows an example result of marking. Figure 7
shows the correct answers and extra information about the ex-
ercise that are shown by clicking the answer button. If a user
can not understand the correct answers he/she can request for
help to other on-line users as shown in Figure 8. The inter-
face agent connected to the user interface program creates an
agent and make it visit all nodes to search for an appropriate
user who has answered the problem correctly. The selected
user is asked whether he or she is willing to help as shown in
Figure 9, and if the user answers with ‘Yes’, a chat connect is
established as shown in Figure 10.

Button pane

Exercise paneCategory pane

Get exercise button

Get harder exercise button

Get easier exercise button

Figure 3 - The window of the user interface program.

Through the interactiveness of Squeak, a user “do it” a sen-
tence in the answer window which includes the correct an-
swers and extra information about the exercise that he/she is
trying shown as Figure 7.

In addition, a user can operate the user interface program
through not only GUI but also sending messages to the ob-
ject that realize the user interface program. Figure 11 shows
an example of sending messages to the user interface object
through a workplace.

Implementation

The user interface program consists of the following classes.

Figure 4 - An exercise can be obtained by clicking the left
button of a mouse on a buttons in the button pane.

