
Machine Cycle CPU Simulator
for Educational Use based on Squeak Environment

Takao KAWAMURA, Yoshio KAWAGUCHI, Shinji NAKANISHI, and Kazunori SUGAHARA
Department of Information and Knowledge Engineering, Faculty of Engineering, Tottori University

{kawamura,sugahara}@ike.tottori-u.ac.jp

Gen SUZUKI
Tottori Prefectural Industrial Reserch Institute

Abstract

A machine cycle CPU simulator is developed on the
Squeak environment for educational use. The developed
simulator is able to show hardware behavior in CPU at
each system clock. Any component of the simulator is im-
plemented as an Morphic object in Squeak. The developed
simulator is examined by execution of example programs
and correct behaviors of their executions are confirmed.

1. Introduction

Varieties of high-level programming languages and their
development environments have been proposed based on
the highly integrated and high performance CPUs. Usu-
ally, in such high-level programming environments, hard-
ware behaviors of CPU circuits are hidden behind as ab-
stract. However, performance of software and that of hard-
ware are inextricably linked. In educational establishments
such as high schools or universities, it is desirable to teach
software and hardware of computer technologies compara-
bly for educating software engineers. But it becomes dif-
ficult to teach how instructions and data are executed and
flows in CPU circuits. Considering these points, a machine
cycle simulator of virtual 16 bits CPU is developed on the
Squeak environments [1] to show the data flow in execution
of programs. We have selected Squeak as the development
environment for our simulator because of its interactiveness
and its user-interface framework, Morphic.

2. Target CPU – SIMPLE –

SIMPLE(SIxteen bit MicroProcessor for Labolatry Ex-
periments) is a virtual CPU designed by Tomita and Naka-
jima for experiments and educational use in laboratories or

classrooms[2]. Its characteristics are summarized as fol-
lows,

1. 16 bits CPU,

2. 216(= 64k)word memory area,

3. Base register addressing method,

4. Every machine code has one word length,

5. Following 7 categorized 28 instructions,

(a) Load instruction,

(b) Store instruction,

(c) Immediate load instruction,

(d) Unconditional branch category including 3 in-
structions,

(e) Conditional branch category with 8 instructions,

(f) Arithmetical and logical operation category with
11 instructions,

(g) Control category with 3 instructions.

6. Every instruction is executed in 5 phases of,

(a) Phase 1: Instruction fetch phase,

(b) Phase 2: Register loading phase,

(c) Phase 3: Operation phase,

(d) Phase 4: Main memory access phase,

(e) Phase 5: Register storing phase.

3. Functions of Simulator

The proposed simulator has following functions to per-
form clock level machine code simulation.

1. Show activated circuit blocks in every execution phase,

2. Show data-flow among registers in CPU and main
memories in every execution phase,

3. Flexible user interface, such as program loading func-
tion from files.

4. Software implementation

A screen image of the proposed simulator is shown in
Fig.1.

Figure 1. Screen image of the proposed simulator.

The developed simulator is composed of a base, a
control-unit, registers, register-collections, data-lines and
buses. Each component is implemented as an object in
Squeak and has its own view on the screen.

The base of which view is shown as gray background
board in Fig.1, creates and manages all other components.
The control-unit sends phase signals to activate components
and its view shows the current phase status and executing
opcode. It also has a controller with which a user generates
system clock signal and reset signal through mouse clicks.

The rest of the components, having one or more preced-
ing components and one or more succeeding components,
receive data from the preceding components, process them
if necessary and send them to the succeeding components.

These components act upon two type of messages, i.e.
phase signal messages from the control-unit and data mes-
sages from the preceding components. When a component
receives the first type of message, it determines whether
data in its data buffer must be processed immediately ac-
cording to the current phase status and the opcode obtained
from the instruction register (IR). If data must be processed
immediately, the components process them and send the re-
sult to the succeeding components and highlights own view.

When a component receives the second type of message,
it determines whether data included the message must be

processed immediately by the same manner as the case of
the first type message is received. If data must be processed
immediately, the components process them and send the re-
sult to the succeeding components and highlights own view.
Otherwise, the component saves them into its data buffer.

5. Experiments

The developed simulator is examined by execution of ex-
ample programs. In the first example, an integer stored in
the main memory is simply loaded into certain register. The
mnemonic code of this example is shown in Fig.2, and cor-
rect behavior of its execution is confirmed.

LI 1,10 r[1] = sext(10)
LD 0,8(1) r[0] = ∗(r[1] + sext(8))
HALT halt()

Figure 2. Example program 1.

The second example is calculation program. Summa-
tion of integer from 1 to 5 is achieved and the final result is
stored in register 3. The mnemonic code is shown in Fig.3
and it is confirmed that this simulator is able to get correct
answer.

LI 0,5 r[0] = sext(5)
LI 1,1 r[1] = sext(1)
MOV 2,0 r[2] = r[0]
SUB 0,1 r[0] = r[0] − r[1]
BLE 2 if(Z||S)PC = PC + 1 + sext(2)
ADD 2,0 r[2] = r[2] + r[0]
B -4 PC = PC + 1 + sext(−4)
HALT halt()

Figure 3. Example Program 2.

6. Conclusion

In this paper, the machine cycle CPU simulator is devel-
oped on the Squeak environment for educational use. The
developed simulator is able to show hardware behavior in
CPU at each system clock.

References

[1] G. Korienek, T. Wrensch, and D. Dechow. SQUEAK – A
Quick Trip to Object Land –. Addison-Wesley, 2002.

[2] S. Tomita and H. Nakajima. Computer hardware. Shokodo
CO., LTD., 1996. in Japanese.

