
IMPLEMENTATION OF A MOBILE AGENT FRAMEWORK
ON JAVA ENVIRONMENT

Takao KAWAMURA, Shin KINOSHITA and Kazunori SUGAHARA
Department of Information and Knowledge Engineering

Tottori University
4–101, Koyama-Minami

Tottori, JAPAN
{kawamura,kinosita,sugahara}@ike.tottori-u.ac.jp

ABSTRACT
We have proposed Maglog which is a framework for mo-
bile multi-agent systems. Maglog is based on Prolog, and
has the concept of field. A field is an object which can
contain a knowledge base. With the concept of field, Ma-
glog provides a simple and unified interface for 1)inter-
agent communication, 2)agent migration between comput-
ers, and 3)utilization of data and programs on comput-
ers. In this paper, we present the implementation of Ma-
glog on Java environment, in detail. Since we have im-
plemented both command-line shell and GUI for Maglog,
users can choose them for their needs. In addition, through
XML-RPC interface for Maglog which we have also im-
plemented, other systems can easily utilize Maglog.

KEY WORDS
Distributed Software Systems and Applications, Mobile
Agent, Logic Programming, Java

1 Introduction

Multi-agent system is drawing attention as a structural
model for many software systems including distributed sys-
tems and artificial intelligence systems[1]. In a multi-agent
system, a number of autonomous agents cooperates mutu-
ally and achieves given tasks. Each agent is generated ac-
cording to a given task and can have its own situation and
operates under the situation. Situation consists of states
and procedures where both of them can be dynamically
changed in general. Therefore, it becomes necessary for
the agent to dynamically hold the states and procedures
(hereafter we refer them as a knowledge base). Moreover,
when a number of agents are cooperating, it is necessary for
them to share knowledge bases and to conduct knowledge
communications between agents. In addition, mobility of
agents is important in multi-agent system because of not
only reducing network latency but simplifying architecture
of software systems[2].

We have proposed Maglog[3] which is a framework
for mobile multi-agent systems. Maglog is based on Pro-
log, and has the concept of field. A field is an object which
can contain a knowledge base. With the concept of field,
Maglog provides a simple and unified interface for 1)inter-

Agent

Field

Agent Server

Computer

NetworkMigration

Figure 1. Overview of a multi-agent system on Maglog.

agent communication, 2)agent migration between comput-
ers, and 3)utilization of data and programs on computers.

In this paper, we present the implementation of Ma-
glog on Java environment, in detail.

2 Overview of Maglog

Figure 1 shows the overview of a multi-agent system on
Maglog. An agent runs as a thread in a process which we
call an agent server. Mobile agents of Maglog are written
in Prolog. Agent servers have objects which hold Prolog
clauses. We call them fields. Builtin predicate in(Goal,
Field) is for evaluation of a goal in a field. An agent can
enter a field by this predicate. Entering a field, an agent can
utilize data and programs in the field.

2.1 Inter-agent Communication

Agents belonging to the same field can be considered of
forming a group. The knowledge within the field is shared
by the agents. Moreover, by changing the knowledge
within the field, agents can influence the actions of other
agents.

An agent can communicate with other agents syn-
chronously or asynchronously by reading/writing Prolog
clauses from/into fields. Updating knowledge base in a
field can be done by the following predicates.

439-074 589

debbie

childparent
create

ans(ID, X).

<parent>
main :-
 fcreate(result),
 create(ID, child,
 main(result)),
 in(ans(ID, X), result).

<child>
main(Field) :-
 calculate(X),
 get_id(ID),
 fassert(ans(ID, X), Field).
calculate(X) :- ...

create

Agent

Field

writeread

Figure 2. Agents can communicate synchronously through
a field.

fasserta(Clause, Field)
fassertz(Clause, Field)
fretract(Clause, Field)

The first argument Clause of these predicates is a clause
to be added or deleted from the field specified by the second
argument Field.

Through these predicates, agents can communicate
with other agents also synchronously. An agent has three
mode for execution of clauses included in a field. Firstly, in
the error mode, an agent is halted permanently when it in-
tends to execute a non-existent clause in a field. Secondly,
in the fail mode, it is failed as an ordinary Prolog interpreter
under the same condition. Finally, in the block mode, it is
blocked until the target clause is added to the field by an-
other agent. For agents in the block mode, a field can be
used as a synchronous communication mechanism such as
a tuple space in Linda model[4].

Figure 2 shows an example that an agent generates a
child agent and waits until the child returns the result.

2.2 Dynamic Change of Behavior

An agent can change its behavior dynamically through en-
tering a field. Figure 3 shows an example. The execution
of the goal print(’Hello!’) sends the string “Hello!”
to a printer when the agent is in fieldA, on the other hand,
the same goal creates a new window containing the string
“Hello!” when the agent is in fieldB.

2.3 Migration

The second arguments of the following predicates can be
like FieldName@HostAddress.

in(Goal, Field)
fasserta(Clause, Field)
fasserta(Clause, Field)
fretract(Clause, Field)
fclause(Head, Body, Field)

fieldA

fieldB

in(print(’Hello!’),
 Field).

Field = fieldA

Field = fieldB

print(X) :-
 ...

print(X) :-
 ...

Hello!
window

agent Hello!

Figure 3. Dynamic Change of agent’s behavior through
entering a field.

f(3).
f(5).

host1

fieldA fieldB

host2

f(5).
f(6).

X=5?
yesbacktracking

X=3
1

X=3?
no

2

4
X=5

3

in(f(X), fieldA@host1),
in(f(X), fieldB@host2),

Figure 4. Backtracking and unification between two com-
puters.

If a host address specified, the agent will go to the host
and access the field. Figure 4 shows that the agent unifies
f(X) with clauses in two fields which are located in dif-
ferent hosts using in/2.

3 Implementation

We have implemented Maglog on Java environment
through extending PrologCafé[5] which is a Prolog-to-Java
source-to-source translator system.

3.1 Basic Components

In this section, we describe the Java implementation of
agent, agent server, and field.

3.1.1 Agent

Figure 5 shows the structure of an agent.

1. ID is given from the agent server when the agent is
created by the server. An ID of an agent is composed
of the IP address of the host in which the agent server

590

Figure 5. Structure of an agent.

runs and the time when the agent created, so that an
ID is globally unique.

2. HomeAddress is the address of the agent server in
which the agent created.

3. CurrentAgentServer is a reference to the agent
server on which the agent currently runs. This ref-
erence is used to invoke methods of an agent server
when agents want to access fields or migrate to other
servers.

4. Code is a predicate that the agent currently executing.
Predicates are executed with a Prolog interpreter in an
agent.

5. ClassLoader is a serializable classloader which
contains the classes of the predicates which are the
knowledge and the program of the agent.

3.1.2 Agent Server

Figure 6 shows the structure of an agent server. An
agent server creates an agent by createAgent method.
createAgent method creates an agent from the agent
repository, which contains classes of predicates of agents,
and pushes into the agent scheduler. The agent scheduler
has threads for agents. When sendAgent method in-
voked, the agent server stops the agent and removes it from
the agent scheduler and sends to the destination.

3.1.3 Field

We have implemented two kinds of field, dynamic field
and static field. Static fields are pre-compiled predicates.
Therefore agents cannot modify static fields, however exe-
cutions of predicates in static fields are relatively fast. Ex-
ecutions of predicates in dynamic fields are relatively slow
however agents can assert and retract clauses in dynamic
fields.

Figure 7 shows the structure of a dynamic field.
Clauses in the dynamic field are put in a hashtable.

Keys of the hashtable are predspec of clauses in the value.
Dynamic Field has assertz, asserta, retract and
clause method. Both assertz and asserta are used
for addition of a clause. The only difference is the position

Figure 6. Structure of an agent server.

Figure 7. Structure of a dynamic field.

of the added clause. The former adds the clause at the bot-
tom of the predicate, while the latter inserts the clause at
the top of the predicate. These methods are synchronized
method and retract and clause call wait method
and assertz and asserta call notifyAll method.

3.2 Builtin Predicates

3.2.1 in/2

in/2 can be used in nested form, like in(in(Goal,
FieldA), FieldB). At first, the implementation of
in/2 makes a list of fields. And goes to the host in which
the field in the list exists and check whether any clause that
can be unified with Goal exists in the field. This proce-
dure iterates the list from the inside of the nested in until
an unifiable clause is found. If it is found, the agent evalu-
ates the goal with the clause and returns to the initial host.
If no clause is found in all nested fields, the agent evaluates
the goal in the agent’s own knowledge base.

3.2.2 fasserta/2, fassertz/2

An agent executes fasserta(Clause, Field) goes
to the host in which the field exists and calls the

591

Figure 8. GUI for an agent server.

asserta method of the field with the Clause in the
argument. Then the agent returns to the initial host.
fassertz(Clause, Field) works in the same man-
ner.

3.2.3 fretract/2

An agent executes fretract(Clause, Field) goes
to the host in which the field exists and calls the retract
method of the field with the Clause in the argument. If
any clause which can unify with Clause is not found in
the field and the agent is in block mode, the agent stops
and waits for the clause which can unify with Clause. If
the agent is in fail mode, it fails immediately. If the unifi-
able clause is found, the agent removes it and returns to the
initial host.

3.2.4 fclause/3

fclause(Head, Body, Field) works in the same
manner as fretract/2 however fclause/3 calls the
clause method of Dynamic Field and doesn’t delete
clauses, just reads clauses.

3.3 User Interface

There are two user interface to manipulate agent servers,
Command-line shell (hereafter we refer to it as CUI) and
graphical user interface (hereafter we abbreviate as GUI).
Both of them can create and delete agents and fields, and
can browse contents of fields and outputs of agents.

3.3.1 GUI

Figure 8 shows GUI of the agent server. This user interface
is implemented with Swing toolkit. The interface extends
the class of agent server, i.e the interface is an agent server,
so that the list of agents, the list of names of fields, the
status of agents and contents of fields are updated in real-
time.

Table 1. Builtin commands of maglogsh.

Command Description
connect connects to the agent server
ls lists the names of dynamic fields in

the agent server
cat shows the content of the dynamic

field
rm deletes the field from the agent server
ps lists agents in the agent server
show shows the output of the agent
kill deletes the agent
create creates an agent

3.3.2 maglogsh

maglogsh is a command-line shell to manipulate the agent
server. Table 1 lists builtin commands of maglogsh.

maglogsh runs on a Java virtual machine independent
of the Java virtual machine on which an agent server runs.
And maglogsh invokes the methods of the agent server via
Java RMI. Therefore, maglogsh can access agent servers
on remote hosts.

3.4 Integration with Other Systems

We have implemented a XML-RPC interface for the agent
server using Marquée XML-RPC, an XML-RPC library for
Java. XML-RPC is a simple remote procedure calling pro-
tocol using XML as the encoding format[6]. Therefore, any
programming languages which supports XML-RPC can ac-
cess Maglog agent servers.

Through XML-RPC, other systems can do the follow-
ing operations.

• create and kill agents.

• create and delete dynamic fields.

• assert and retract clauses in dynamic fields.

• get a list of names of dynamic fields.

• get a list of IDs of agents.

Prolog clauses in return values and arguments of re-
quests are translated to data types of XML-RPC by the
agent server.

4 Applications

We will outline several applications developed using Ma-
glog.

1. e-Learning System[7]

An P2P-based e-Learning system has been built using
Maglog. This e-Learning system has two distinguish-
ing features. Firstly, it is based on P2P architecture

592

for scalability and robustness. Secondly, each content
in the system is not only data but an agent so that it
can mark user’s answers, tell the correct answers, and
show some extra information without human instruc-
tion. Maglog plays an important role to realize the
both features.

2. Schedule Arrangement System[8]

This system, which has been developed using Maglog,
establishes and arranges meeting schedule without hu-
man negotiations. Once a convener convenes a meet-
ing through the system, an agent moves around the
members of the meeting and negotiates with them au-
tomatically.

3. HECS System[9]

Maglog is used for HECS (Heterogeneous Constraint
Solving) system, which was supported in part by IPA
(The Information-technology Promotion Agency) un-
der grant of 2003 Exploratory Software Project, to co-
ordinate distributed solvers each other.

5 Related Works

There are several mobile agent frameworks realized as
a set of class libraries for Java such as Aglets[10] and
MobileSpaces[11]. The combination of one of them
and a Prolog interpreter/compiler written in Java such as
NetProlog[12] and Jinni[13] have some similarity to Ma-
glog. The main difference between the combination and
Maglog is the class of mobility. Their mobility is so-called
weak mobility, in which only its clause database is mi-
grated. On Maglog, all of the execution state including ex-
ecution stack can be migrated (so-called strong mobility),
therefore agents on Maglog can backtrack and unify vari-
ables during migration. That makes programs on Maglog
simple and understandable.

6 Conclusion

In this paper, we presented the implementation of a mobile
agent framework Maglog, in detail. With the concept of
field, Maglog provides a simple and unified interface for
1)inter-agent communication, 2)agent migration between
computers, and 3)utilization of data and programs on com-
puters. Since we have implemented both CUI and GUI for
Maglog, users can choose CUI or GUI for their needs. And
through XML-RPC interface which we have implemented,
other systems can easily utilize Maglog.

References

[1] Weiss, G.(ed.): Multi-Agent Systems: A Modern Ap-
proach to Artificial Intelligence, MIT Press (2000).

[2] Lange, D. B. and Oshima, M.: Seven good reasons for
mobile agents, Communications of the ACM, Vol. 42,
No. 3, pp. 88–89 (1999).

[3] Kawamura, T., Kinoshita, S., Sugahara, K. and
Kuwatani, T.: A Logic-based Framework for Mo-
bile Multi-Agent Systems, Proceedings of Interna-
tional Conference on Integration of Knowledge In-
tensive Multi-Agent Systems (Hexmoor, H.(ed.)), pp.
754–759 (2003). Boston, Massachusetts, USA.

[4] Carriero, N. and Gelernter, D.: Linda in Context,
Communications of the ACM, Vol. 32, No. 4, pp. 444–
458 (1989).

[5] Banbara, M. and Tamura, N.: Translating a Linear
Logic Programming Language into Java, Proceed-
ings of the ICLP’99 Workshop on Parallelism and Im-
plementation Technology for (Constraint) Logic Pro-
gramming Languages (M.Carro, I.Dutra et al.(eds.)),
pp. 19–39 (1999).

[6] Winer, D.: XML-RPC Specification,
http://xmlrcp.com/spec.

[7] Kawamura, T., Yamane, S., Kinoshita, S. and Suga-
hara, K.: A Mobile Agent-Based P2P e-Learning Sys-
tem, Proceedings of the IASTED International Con-
ference on Parallel and Distributed Computing and
Systems (2004, submitted).

[8] Kinosita, S., Kawamura, T. and Sugahara, K.: Mo-
bile Agent based Schedule Arrangement System, Pro-
ceedings of the 5th IEEE Hiroshima Student Sympo-
sium (HISS), pp. 205–206 (2003).

[9] Banbara, M., Tamura, N., Inoue, K., Kawamura, T.
and Tamaki, H.: Java Implementation of a Distributed
Constraint Solving System, Exploratory software
project, Information-technology Promotion Agency
Japan (2003).

[10] Lange, D. B. and Oshima, M.: Programming and
Deploying Java Mobile Agents with Aglets, Addison
Wesley (1998).

[11] Satoh, I.: MobileSpaces: A Framework for Building
Adaptive Distributed Applications using a Hierarchi-
cal Mobile Agent System, Proceedings of IEEE Inter-
national Conference on Distributed Computing Sys-
tems, IEEE Press, pp. 161–168 (2000).

[12] de Carvalho, C. L., Pereira, E. C. and da Silva Ju-
lia, R. M.: NetProlog: A Logic Programming System
for the Java Virtual Machine, Proceedings of the 1st
International Conference on Enterprise Information
Systems, pp. 591–598 (1999). Setubal, Portugal.

[13] Tarau, P.: Inference and Computation Mobility with
Jinni, The Logic Programming Paradigm: a 25 Year
Perspective (Apt, K., Marek, V. and Truszczynski,
M.(eds.)), Springer, pp. 33–48 (1999).

593

