
A Logic-based Framework
for Mobile Multi-Agent Systems
Takao KAWAMURA, Shin KINOSHITA, and Kazunori SUGAHARA

Department of Information and Knowledge Engineering, Faculty of Engineering, Tottori University
4–101, Koyama-Minami, Tottori 680–8552, JAPAN

+81 857 31 5217
{kawamura,kinosita,sugahara}@ike.tottori-u.ac.jp

Tsuyoshi KUWATANI
Small Business Innovation Research, Industrial Research Institute, Tottori Prefecture

7–1–1,Wakabadai-Minami, Tottori, 689–1112, JAPAN
+81 857 38 6214

kuwatani@e-tottori.com

Abstract—In this paper, we present a Prolog-based frame-
work for building mobile multi-agent systems. In this frame-
work, a new concept called “field” is introduced. A field
provides data and procedures which are written in forms of
Prolog program. An agent can “enter” into a field. Multiple
agents can enter into one field, and the data and procedures of
the field are shared by the agents. Therefore, agents in a field
can communicate each other through the field. Furthermore,
a field is located on a computer in a network, and an agent
entering in a field migrate to a computer on which the field lo-
cate automatically. An implementation of this framework has
been built on Java environment. In this paper, example pro-
grams running on our system are included to demonstrate the
effectiveness of the proposed framework.

1. INTRODUCTION

Multi-agent system is drawing attention as a structural model
for many software systems including distributed systems and
artificial intelligence systems[1]. In a multi-agent system,
a number of autonomous agents cooperates mutually and
achieves given tasks. Each agent is generated according to
a given task and can have its own situation and operates un-
der the situation. Situation consists of states and procedures
where both of them can be dynamically changed in gen-
eral. Therefore, it becomes necessary for the agent to dy-
namically hold the states and procedures (hereafter we re-
fer them as a knowledge base). Moreover, when a number
of agents are cooperating, it is necessary for them to share
knowledge bases and to conduct knowledge communications
between agents. In addition, mobility of agents is important in
multi-agent system because of not only reducing network la-
tency but simplifying architecture of software systems[2]. Al-
though some frameworks for multi-agent systems have been
proposed[3, 4, 5, 6, 7, 8, 9, 10], no framework is provided for
constructing distributed knowledge sharing mobile agents.

In this research, an object called “field” is proposed which can
contain a knowledge base. An agent can “enter” into a field.
Multiple agents can enter into one field, and also an agent can
enter into multiple fields. An agent, by entering a field, can
refer to the knowledge base of the field as if it were its own.
Other agents in the same field share the knowledge base of
the field. Fields provide not only knowledge base but also a
communication mechanism for agents, i.e., agents can com-
municate with each other synchronously and asynchronously
through fields. Furthermore, a field is located on a computer
in a network, and an agent entering in a field migrate to a com-
puter on which the field locate automatically.

The proposed framework for mobile multi-agent systems, Ma-
glog is based on Prolog, and has features of creating and con-
trolling both agents and fields. We implemented Maglog on
Java environment so that it is multi-platform and agents in Ma-
glog can make or use any Java object.

This paper is organized in 5 sections. We describe the architec-
ture of our framework in Section 2. In Section 3, we describe
a implementation of the framework. In Section 4, we present
example programs running on the system. Finally, in Section
5, we describe some concluding remarks.

2. ARCHITECTURE OF MAGLOG

The proposed framework is based on Prolog and each agent
can conduct autonomous actions. A field provides an environ-
ment for agents. Agents which belong to the same field can
be considered of forming a group. Information exchange be-
tween agents in the same field is conducted through the knowl-
edge base within the field.

Agent

An agent has the following functions.

1. Execution of a program defining actions of the agent,

2. Execution of a program included in a field where the
agent currently belongs,

3. Communication with other agents through a field,

4. Creation of agents and fields,

5. Entering into a field. That often implying the agent mi-
grates to another computer in a network. The model
of agent state migration in Maglog is strong migration
which involves the transparent migration of agent’s exe-
cution state as well as its program and data[11].

An agent is created when another agent executes the following
predicate.

create(Agent, Agent file, Goal)

An agent of the given Agent file which contains Prolog
program is created and its identifier is returned to the argu-
ment Agent. The created agent executes Goal and disap-
pears when the execution of Goal is accomplished.

By executing the following predicate, the agent of the identi-
fier Agent disappears anytime.

kill(Agent)

An agent can obtain his own identifier by executing the fol-
lowing predicate.

get id(Agent)

As shown in Figure 1, an agent consists of Prolog program
and Prolog engine. Prolog engine is a Prolog interpreter
which executes the Prolog program. Prolog program is ini-
tially the program given from Agent file . However since
there is no distinction between program and data in Prolog,
the agent program might be modified during execution. For
example, as shown in Figure 2, agent A obtains a clause
“p(X):-q(X),r(X).” from field A. Leaning of agents can
be realized by this function.

<Program> <Execution State>

Prolog Engine

Program
CounterStack

Agent
start :-
main :-
print :-

Figure 1 - An agent is composed of Prolog program and Pro-
log engine.

agentA

fieldA

p(X) :- q(X), r(X).

p(X) :- q(X), r(X).

in((clause(p(X), Y), assert(p(X):-Y)), fieldA).

Figure 2 - Dynamic change of agent’s knowledge base by as-
serting a new clause.

Field

A knowledge base can be stored within a field. The expression
formats of both knowledge bases and agent programs are the
same, i.e. Prolog clauses.

A field is created when an agent executes the following predi-
cate.

fcreate(Field)

If Field is an unbound variable, a field which has an unique
identifier is created and its identifier is bound to the argument
Field. If Field is a symbol(atom), the function of this
predicate depends on whether the field whose identifier is the
symbol exists or not. If it does not exist, a field whose identi-
fier is the symbol which is created by this predicate, otherwise
nothing is done.

An agent enters a field and execute a goal by the following
predicate.

in(Goal, Field)

When an agent enters into a field, it can use combined knowl-
edge of itself and the field. Therefore, an agent needs not to
hold all the knowledge by itself to solve a problem, but rather
entering to appropriate fields which provide necessary knowl-
edge.

As shown in Figure 3, an agent in a field can access its own
knowledge base and the field’s knowledge base as if they were
combined into a single knowledge base. The search order of
the knowledge bases is set up so that the agent’s own knowl-
edge base is searched first, and then the field’s knowledge base
is searched. An agent can reside in multiple fields, and the
search is executed in the reverse order of entering to the fields,
in this case. If multiple knowledge bases have the same pro-
cedure, the last entered field’s procedure shadows the other’s
procedures. They are not merged into one procedure. For ex-
ample, f(fieldA) in Figure 3 shadows f(fieldB) and
f(agent).

in(in(f(X), fieldA), fieldB)

f(fieldB).
i(fieldB).

fieldA

fieldB

f(agent).
g(agent).

in
f(fieldA).
h(fieldA).

f(fieldA).
g(agent).
h(fieldA).
i(fieldB).

Figure 3 - An agent combines its own knowledge base with
the knowledge base of the fields.

An agent can change its behavior dynamically through en-
tering a field. Figure 4 shows an example. The execution
of the goal print(’Hello!’) sends the string “Hello!”
to a printer when the agent is in fieldA, on the other hand,
the same goal creates a new window containing the string
“Hello!” when the agent is in fieldB.

fieldA

fieldB

in(print(’Hello!’),
 Field).

Field = fieldA

Field = fieldB

print(X) :-
 ...

print(X) :-
 ...

Hello!
window

agent Hello!

Figure 4 - Dynamic Change of agent’s behavior through en-
tering a field.

Agents belonging to the same field can be considered of form-
ing a group. The knowledge within the field is shared by the
agents. Moreover, by changing the knowledge within the field,
agents can influence the actions of other agents.

Updating knowledge base in a field can be done by the follow-
ing predicates.

fassert(Clause, Field)
fretract(Clause, Field)

The first argument Clause of both the predicates is a clause
to be added or deleted from the field specified by the second
argument Field.

Through these predicates, agents can communicate with other

agents also synchronously. An agent has three mode for exe-
cution of clauses included in a field. Firstly, in the error mode,
an agent is halted permanently when it intends to execute a
non-existent clause in a field. Secondly, in the fail mode, it is
failed as an ordinary Prolog interpreter under the same condi-
tion. Finally, in the block mode, it is blocked until the target
clause is added to the field by another agent. For agents in the
block mode, a field can be used as a synchronous communica-
tion mechanism such as a tuple space in Linda model[12].

Figure 5 shows an example that an agent generates a child
agent and waits until the child returns the result.

childparent
create

ans(ID, X).

<parent>
main :-
 fcreate(result),
 create(ID, child,
 main(result)),
 in(ans(ID, X), result).

<child>
main(Field) :-
 calculate(X),
 get_id(ID),
 fassert(ans(ID, X), Field).
calculate(X) :- ...

create

Agent

Field

writeread

Figure 5 - Agents can communicate synchronously through a
field.

f(3).
f(5).

host1

fieldA fieldB

host2

f(5).
f(6).

X=5?
yesbacktracking

X=3
1

X=3?
no

2

4
X=5

3

in(f(X), fieldA@host1),
in(f(X), fieldB@host2),

Figure 6 - Backtracking and unification between two comput-
ers.

3. REALIZATION OF MAGLOG

Maglog is realized on Java environment (JDK1.2 or later ver-
sion) using Prolog Café[13] and run on any computer with a
JDK 1.2-compatible runtime.

As shown in Figure 7, each computer in a network runs a
server process for Maglog. Any agent runs on the server as
a thread. An agent migrates from one server to another server
through Java RMI technology.

Agent

Field

Agent Server

Computer

NetworkMigration

Figure 7 - Structure of Maglog

We have classified fields into static fields and dynamic fields.
The former is compiled into Java classes before the server pro-
cess which own the field starts. Thereby static fields can not
be changed after the server process starts. On the other hand,
dynamic fields can be changed in any time through the predi-
cates described in section . An agent can execute a clause in a
static field about 250 times faster than in a dynamic field.

Since Maglog is implemented on Java, any Java class library
can be used from Maglog programs.

The implementation provides graphical user interfaces for op-
erating agents and fields as shown in Figure 8.

Figure 8 - The control window of the Maglog server

Basic Performance of Maglog

Table 1 shows data for a simple agent for evaluation of Maglog
that makes 100 round trips between two computers in Maglog
and Aglets[3]. Those computers are connected directly via
100Base-TX Ethernet.

The program size of the agent in Maglog is smaller than one in
Aglets because Maglog supports strong agent mobility while
Aglets only supports weak agent mobility. For same reason,
the agent size in Maglog is larger than one in Aglets. How-

Table 1 - Comparison between Maglog and Aglets
Maglog Aglets

program size(lines) 5 41
program size(bytes) 93 1047
agent size(bytes) 7764 767
migration time(msec) 12089 14281

ever, the migration of the agent in Maglog is faster than one in
Aglets.

Test program in Maglog and Aglets are shown in the appendix
A and B, respectively.

4. APPLICATION EXAMPLES

Contract Net Protocol

The Contract Net Protocol (CNP) [14] assigns subtasks to
agents which are involved in multi-agent problem solving.
Appendix C presents a sample program of CNP in Maglog.
The “contract” field not only provides utility procedures for
CNP but also realizes communication between the manager
agent and the worker agents.

Search for Books

Suppose a searcher agent wants to know the ISBN code of a
book of which the title and the author are known. the searcher
agent first searches the bookshelf in his own room, then if the
desired item is not found, he goes around to a number of li-
braries until the desired book is found. A bookshelf or a li-
brary are expressed by a field, and book databases are stored
in each respective field. Ordinarily, in one’s own room, every
title on the bookshelf must be checked. In a library, a card file
or a relational database is used to search for books. Therefore,
the search method differs depending on the field. However, if
search methods are defined under the same name (for exam-
ple, search) the searcher agent can use them without being
aware of these differences. A sample program is shown in the
appendix D.

5. CONCLUSION

In this paper, we present a new framework for mobile multi-
agent systems, Maglog. A mechanism called “field” which
holds a knowledge base is introduced.

By using this concept,

1. Knowledge base can be shared by agents,

2. Situations of agents can be expressed,

3. Strong migration of agents can be realized, and

4. Mutual cooperation between agents distributed on a com-
puter network can be realized.

We realized Maglog on Java environment and confirmed its
effectiveness through experiments.

ACKNOWLEDGEMENTS

We would like to thank Prof. Yukio Kaneda, Prof. Naoyuki
Tamura, Dr. Katumi Inoue, Dr. Hisasi Tamaki, and Dr. Mut-
sunori Banbara for many fruitful discussions.

REFERENCES

[1] Weiss, G.(ed.): Multi-Agent Systems: A Modern Ap-
proach to Artificial Intelligence, MIT Press (2000).

[2] Lange, D. B. and Oshima, M.: Seven good reasons for
mobile agents, Communications of the ACM, Vol. 42,
No. 3, pp. 88–89 (1999).

[3] Lange, D. B. and Oshima, M.: Programming and
Deploying Java Mobile Agents with Aglets, Addison-
Wesley (1998).

[4] Osuga, A., Nagai, Y., Irie, Y., Hattori, M. and Honiden,
S.: Plangent: An Approach to Making Mobile Agents
Intelligent, IEEE Internaet Computing, Vol. 1, No. 4, pp.
50–57 (1997).

[5] Wong, D., Paciorek, N., Walsh, T. and Dicelie, J.:
Concordia: An Infrastructure for Collaborating Mobile
Agents, Proceedings of the First International Workshop
on Mobile Agents, Vol. 1219, Springer-Verlag, pp. 86–97
(1997).

[6] Kumeno, F., Ohsuga, A. and Honiden, S.: Flage: A
Programming Language for Adaptive Software, IEICE
Transactions of Information & System, Vol. E81–D,
No. 12, pp. 1394–1403 (1998).

[7] Tarau, P.: Inference and Computation Mobility with
Jinni, The Logic Programming Paradigm: a 25 Year
Perspective (Apt, K., Marek, V. and Truszczynski,
M.(eds.)), Springer, pp. 33–48 (1999).

[8] Fukuta, N., Ito, T. and Shintani, T.: MiLog: A Mobile
Agent Framework for Implementing Intelligent Informa-
tion Agents with Logic Programming, Proceedings of
the 1st Pacific Rim International Workshop on Intelligent
Information Agents, pp. 113–123 (2000).

[9] Satoh, I.: MobileSpaces: A Framework for Building
Adaptive Distributed Applications using a Hierarchical
Mobile Agent System, Proceedings of IEEE Interna-
tional Conference on Distributed Computing Systems,
IEEE Press, pp. 161–168 (2000).

[10] Suri, N., Bradshaw, J. M., Breddy, M. R., Groth, P. T.,
Hill, G. A., Jeffers, R., Mitrovich, T. S., Pouliot, B. R.
and Smith, D. S.: NOMADS: toward a strong and safe

mobile agent system, Proceedings of the fourth interna-
tional conference on Autonomous agents, pp. 163–164
(2000).

[11] Ghezzi, C. and Vigna, G.: Mobile Code Paradigms and
Technologies: A Case Study, Proceedings of the First
International Workshop on Mobile Agents, pp. 39–49
(1997).

[12] Carriero, N. and Gelernter, D.: Linda in Context, Com-
munications of the ACM, Vol. 32, No. 4, pp. 444–458
(1989).

[13] Banbara, M. and Tamura, N.: Translating a linear
logic programming language onto Java, Proceedings of
ICLP’99 Workshop on Parallelism and Implementation
Technology for (Constraint) Logic Programming Lan-
guages, pp. 19–39 (1999).

[14] Smith, R.: The Contract Net Protocol: High-Level Com-
munication and Control in a Distributed Problem Solver,
IEEE Transactions on Computers, Vol. C-29, No. 12, pp.
1104–1113 (1980).

A TEST PROGRAM IN MAGLOG

main(_, 0):-!.
main(Dest, N):-

in(true, test@Dest),
N1 is N - 1,
main(Dest, N1).

B TEST PROGRAM IN AGLETS

public class HelloAglet extends Aglet {
SimpleItinerary si = null;
String home = null;
String dest = null;
int count = 100;
public boolean
handleMessage(Message msg) {

if (msg.sameKind("atHome"))
atHome(msg);

else if (msg.sameKind("atDest"))
atDest(msg);

else
return false;

return true;
}
public void onCreation(Object init) {

si = new SimpleItinerary(this);
home = getAgletContext().

getHostingURL().toString();
}
public void atHome(Message msg) {

if(count > 0)
try {

si.go(dest, "atDest");
} catch (Exception ex) {

ex.printStackTrace();
}

dispose();
}
public void atDest(Message msg) {

try {
count--;
si.go(home, "atHome");

} catch (Exception ex) {
ex.printStackTrace();

}
}
public void setDest(String dest) {

this.dest = dest;
}

}

C PROGRAM OF THE CONTRACT NET PRO-
TOCOL

%%%%%%%%%% contract.pl %%%%%%%%%%
:-public delegate/3, get_goal/2,

propose/2, inform/2.
delegate(Goal, Result, Time) :-

fcreate(cfp),
get_id(ID),
fassert(cfp(ID, Goal), cfp),
sleep(Time),
noblock(findall(

proposal(Wkr, Cost),
fretract(proposal(Wkr,ID,Cost),

cfp),
Proposals)),

fretract(cfp(ID, Goal), cfp),
sort(Proposals, [Best|Reject]),
fassert(reply(ID, Best, accept),cfp),
reject(Reject, cfp),
fretract(inform(ID, Result), cfp),
Result == yes.

get_goal(Mngr, Goal) :-
fcreate(cfp),
in(cfp(Mngr, Goal), cfp).

propose(Mngr, Cost) :- get_id(ID),
fassert(proposal(ID, Mngr, Cost),

cfp),
fretract(reply(Mngr,ID,R), cfp),
R == accept.

inform(Mngr, Res):-
fassert(inform(Mngr, Rel), cfp).

reject([], _) :-!.
reject([proposal(Wkr,Cost)|T], Field) :-

get_id(ID),
fassert(reply(ID,Wkr,reject),Field),
reject(T, Field).

%%%%%%%%%% worker.pl %%%%%%%%%%
main :-

in(get_goal(Mngr, Goal), contract),
calculate_cost(Goal, Cost),
in(propose(Mngr, Cost), contract),
process(Goal, Res),
in(inform(Mngr, Res), contract).

process(Goal, yes) :- Goal, !.
process(Goal, no).
%%%%%%%%%% manager.pl %%%%%%%%%%
main(Goal) :-

in(delegate(Goal, Result, 3),
contract).

D PROGRAM OF SEARCH FOR BOOKS

%%%%%%%%%%%% agent.pl %%%%%%%%%%%%
book_search(Author, Title, ISBN) :-

bs(Author, Title, ISBN,
[fieldA@hostA,
fieldB@hostB,
fieldC@hostC]).

bs(Author, Title, ISBN, [Field|Tail]) :-
in(search(Author, Title, ISBN),

Field), !.
bs(Author, Title, ISBN, [_|Tail]) :-

bs(Author, Title, ISBN, Tail).
%%%%%%%%%%%% fieldA.pl %%%%%%%%%%%%
:- public search/3.
search(Author, Title, ISBN) :-

book(Author, Title, ISBN).
book(author0,title0,’ISBN0-0000-0000-0’).
book(author0,title1,’ISBN1-1111-1111-1’).
%%%%%%%%%%%% fieldB.pl %%%%%%%%%%%%
:- public search/3.
search(Author, Title, ISBN) :-

data(Author, List),
s(Title, ISBN, List).

s(Title, ISBN, [book(Title, ISBN)|_]).
s(Title, ISBN, [_|Tail]) :-

s(Title, ISBN, Tail).
data(author0,

[book(title2,’ISBN2-2222-2222-2’),
book(title3,’ISBN3-3333-3333-3’)]).

data(author1,
[book(title4,’ISBN4-4444-4444-4’)]).

%%%%%%%%%%%% fieldC.pl %%%%%%%%%%%%
:- public search/3.
search(Author, Title, ISBN) :-

java_constructor(’example.SQL’, SQL),
java_method(SQL,

query(Author,Title),ISBN).

